Подпишись и читай
самые интересные
статьи первым!

Значимость коэффициентов уравнения регрессии оценивают критерием. Проверка значимости уравнения регрессии

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Проверка значимости производится на основе дисперсионного анализа.

Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части - объясненную и необъясненную:

или, соответственно:

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид.

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы (df-degrees of freedom) - это число независимо варьируемых значений признака.

Для общей СКО требуется (n-1) независимых отклонений,

Факторная СКО имеет одну степень свободы, и

Таким образом, можем записать:

Из этого баланса определяем, что = n-2.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: - общая дисперсия, - факторная, - остаточная.

Анализ статистической значимости коэффициентов линейной регрессии

Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.

Дисперсии коэффициентов рассчитываются по формулам:

Дисперсия коэффициента регрессии:

где - остаточная дисперсия на одну степень свободы.

Дисперсия параметра:

Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:

Стандартная ошибка параметра определяется по формуле:

Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .

Альтернативная гипотеза имеет вид: .

t - статистики имеют t - распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости б и степенях свободы находят критическое значение.

Если, то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.

Если, то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид, и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде).

Интервальные оценки коэффициентов линейного уравнения регрессии:

Доверительный интервал для а: .

Доверительный интервал для b:

Это означает, что с заданной надёжностью (где - уровень значимости) истинные значения а, b находятся в указанных интервалах.

Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.

Анализ статистической значимости уравнения в целом.

Распределение Фишера в регрессионном анализе

Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y (или).

Величина F - критерия связана с коэффициентом детерминации. В случае множественной регрессии:

где m - число независимых переменных.

В случае парной регрессии формула F - статистики принимает вид:

При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: - в случае множественной регрессии, - для парной регрессии.

Если, то отклоняется и делается вывод о существенности статистической связи между y и x.

Если, то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.

Замечание. В парной линейной регрессии. Кроме того, поэтому. Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.

Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен, затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение, для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть, пусть небольшую, вариации зависимой переменной).

Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина

имеющая распределение Фишера с степенями свободы.

По таблицам распределения Фишера, при заданном уровне значимости, находят. И если, то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.

Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.

В этом случае рассчитывается F - статистика

имеющая распределение. И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).

Замечания. 1. Включать новые переменные целесообразно по одной.

2. Для расчёта F - статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.

F - статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.

Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида. Пусть СКО от линии регрессии (т.е.) равны для них, соответственно, .

Проверяется нулевая гипотеза: о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.

Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО.

Тогда рассчитывается F - статистика по формуле:

Она имеет распределение Фишера с степенями свободы. F - статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае. Т.е. если, то нулевая гипотеза принимается.

Если же, то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.

После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов, т.е. всего уравнения в целом. Такой анализ осуществляется на основе проверки гипотезы об общей значимости гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных:

H 0: b 1 = b 2 = ... = b m = 0.

Если данная гипотеза не отклоняется, то делается вывод о том, что совокупное влияние всех m объясняющих переменных Х 1 , Х 2 , ..., Х m модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравнения регрессии – невысоким.

Проверка данной гипотезы осуществляется на основе дисперсионного анализа сравнения объясненной и остаточной дисперсии.

Н 0: (объясненная дисперсия) = (остаточная дисперсия),

H 1: (объясненная дисперсия) > (остаточная дисперсия).

Строится F-статистика:

где – объясненная регрессией дисперсия;

– остаточная дисперсия (сумма квадратов отклонений, поделённая на число степеней свободы n-m-1). При выполнении предпосылок МНК построенная F-статистика имеет распределение Фишера с числами степеней свободы n1 = m, n2 = n–m–1. Поэтому, если при требуемом уровне значимости a F набл > F a ; m ; n - m -1 = F a (где F a ; m ; n - m -1 - критическая точка распределения Фишера), то Н 0 отклоняется в пользу Н 1 . Это означает, что объяснённая регрессией дисперсия существенно больше остаточной дисперсии, а следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной Y. Если F набл < F a ; m ; n - m -1 = F кр. , то нет основания для отклонения Н 0 . Значит, объясненная дисперсия соизмерима с дисперсией, вызванной случайными факторами. Это дает основание считать, что совокупное влияние объясняющих переменных модели несущественно, а следовательно, общее качество модели невысоко.

Однако на практике чаще вместо указанной гипотезы проверяют тесно связанную с ней гипотезу о статистической значимости коэффициента детерминации R 2:



Н 0: R 2 > 0.

Для проверки данной гипотезы используется следующая F-статистика:

. (8.20)

Величина F при выполнении предпосылок МНК и при справедливости H 0 имеет распределение Фишера, аналогичное распределению F-статистики (8.19). Действительно, разделив числитель и знаменатель дроби в (8.19) на общую сумму квадратов отклонений и зная, что она распадается на сумму квадратов отклонений, объяснённую регрессией, и остаточную сумму квадратов отклонений (это является следствием, как будет показано позже, системы нормальных уравнений)

,

мы получим формулу (8.20):

Из (8.20) очевидно, что показатели F и R 2 равны или не равны нулю одновременно. Если F = 0, то R 2 = 0, и линия регрессии Y = является наилучшей по МНК, и, следовательно, величина Y линейно не зависит от Х 1 , Х 2 , ..., Х m . Для проверки нулевой гипотезы Н 0: F = 0 при заданном уровне значимости a по таблицам критических точек распределения Фишера находится критическое значение F кр = F a ; m ; n - m -1 . Нулевая гипотеза отклоняется, если F > F кр. Это равносильно тому, что R 2 > 0, т.е. R 2 статистически значим.

Анализ статистики F позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации R 2 не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Пусть, например, при оценке регрессии с двумя объясняющими переменными X 1 i , X 2 i по 30 наблюдениям R 2 = 0,65. Тогда

F набл = =25,07.

По таблицам критических точек распределения Фишера найдем F 0,05; 2; 27 = 3,36; F 0,01; 2; 27 = 5,49. Поскольку F набл = 25,07 > F кр как при 5%–м, так и при 1%–м уровне значимости, то нулевая гипотеза в обоих случаях отклоняется.

Если в той же ситуации R 2 = 0,4, то

F набл = = 9.

Предположение о незначимости связи отвергается и здесь.

Отметим, что в случае парной регрессии проверка нулевой гипотезы для F-статистики равносильна проверке нулевой гипотезы для t-статистики

коэффициента корреляции. В этом случае F-статистика равна квадрату t-статистики. Самостоятельную значимость коэффициент R 2 приобретает в случае множественной линейной регрессии.

8.6. Дисперсионный анализ для разложения общей суммы квадратов отклонений. Степени свободы для соответствующих сумм квадратов отклонений

Применим изложенную выше теорию для парной линейной регрессии.

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом даётся с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. b = 0, и, следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчёту F-критерия предшествует анализ дисперсии. Центральное место в нём занимает разложение общей суммы квадратов отклонений переменной у от среднего значения на две части – “объяснённую” и “необъяснённую”:

Уравнение (8.21) является следствием системы нормальных уравнений, выведенных в одной предыдущих тем.

Доказательство выражения (8.21).

Осталось доказать, что последнее слагаемое равно нулю.

Если сложить от 1 до n все уравнения

y i = a+b×x i +e i , (8.22)

то получим åy i = a×å1+b×åx i +åe i . Так как åe i =0 и å1 =n, то получим

Тогда .

Если же вычесть из выражения (8.22) уравнение (8.23), то получим

В результате получим

Последние суммы равны нулю в силу системы двух нормальных уравнений.

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы. Если фактор на оказывает никакого влияния на результат, то линия регрессии параллельна оси OX и . Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связана с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объяснённая регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный влиянием фактора х, т.е. регрессией у по х, так и вызванный действием прочих причин (необъяснённая вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объяснённую вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное влияние на признак у. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Любая сумма квадратов связана с числом степеней свободы (df – degrees of freedom), с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых отклонений из n возможных требуется для образования данной суммы квадратов. Так, для общей суммы квадратов требуется (n-1) независимых отклонений, ибо по совокупности из n единиц после расчёта среднего свободно варьируют лишь (n-1) число отклонений. Например, мы имеем ряд значений у: 1,2,3,4,5. Среднее из них равно 3, и тогда n отклонений от среднего составят: -2, -1, 0, 1, 2. Так как , то свободно варьируют лишь четыре отклонения, а пятое отклонение может быть определено, если предыдущие четыре известны.

При расчёте объяснённой или факторной суммы квадратов используются теоретические (расчётные) значения результативного признака

Тогда сумма квадратов отклонений, обусловленных линейной регрессии, равна

Поскольку при заданном объёме наблюдений по x и y факторная сумма квадратов при линейной регрессии зависит только от константы регрессии b, то данная сумма квадратов имеет только одну степень свободы.

Существует равенство между числом степеней свободы общей, факторной и остаточной суммой квадратов отклонений. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет n-2. Число степеней свободы общей суммы квадратов определяется числом единиц варьируемых признаков, и поскольку мы используем среднюю вычисленную по данным выборки, то теряем одну степень свободы, т.е. df общ. = n–1.

Итак, имеем два равенства:

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений, или, что то же самое, дисперсию на одну степень свободы D.

;

;

.

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчёте на одну степень свободы, получим величину F-критерия Фишера

где F-критерий для проверки нулевой гипотезы H 0: D факт = D ост.

Если нулевая гипотеза справедлива, то факторная и остаточная дисперсии не отличаются друг от друга. Для H 0 необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором разработаны таблицы критических значений F-отношений при различных уровнях существенности нулевой гипотезы и различном числе степеней свободы. Табличное значение F-критерия – это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения признаётся достоверным, если оно больше табличного. Если F факт > F табл, то нулевая гипотеза H 0: D факт = D ост об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи.

Если F факт < F табл, то вероятность нулевой гипотезы H 0: D факт = D ост выше заданного уровня (например, 0,05) и она не может быть отклонена без серьёзного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Гипотеза H 0 не отклоняется.

В рассматриваемом примере из главы 3:

= 131200 -7*144002 = 30400 – общая сумма квадратов;

1057,878*(135,43-7*(3,92571) 2) = 28979,8 – факторная сумма квадратов;

=30400-28979,8 = 1420,197 – остаточная сумма квадратов;

D факт = 28979,8;

D ост = 1420,197/(n-2) = 284,0394;

F факт =28979,8/284,0394 = 102,0274;

F a =0,05; 2; 5 =6,61; F a =0,01; 2; 5 = 16,26.

Поскольку F факт > F табл как при 1%-ном, так и при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

Величина F-критерия связана с коэффициентом детерминации . Факторную сумму квадратов отклонений можно представить как

,

а остаточную сумму квадратов – как

.

Тогда значение F-критерия можно выразить как

.

Оценка значимости регрессии обычно даётся в виде таблицы дисперсионного анализа

, его величина сравнивается с табличным значением при определённом уровне значимости α и числе степеней свободы (n-2).
Источники вариации Число степеней свободы Сумма квадратов отклонений Дисперсия на одну степень свободы F-отношение
фактическое Табличное при a=0,05
Общая
Объяснённая 28979,8 28979,8 102,0274 6,61
Остаточная 1420,197 284,0394

Для проверки значимости анализируется отношение коэффициента регрессии и его среднеквадратичного отклонения. Это отношение является распределением Стьюдента, то есть для определения значимости используем t – критерий:

- СКО от остаточной дисперсии;

- сумма отклонений от среднего значения

Если t рас. >t таб. , то коэффициент b i является значимым.

Доверительный интервал определяется по формуле:

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    Взять исходные данные согласно варианту работы (по номеру студента в журнале). Задан статический объект управления с двумя входами X 1 , X 2 и одним выходом Y . На объекте проведен пассивный эксперимент и получена выборка объемом 30 точек, содержащая значения Х 1 , Х 2 и Y для каждого эксперимента.

    Открыть новый файл в Excel 2007. Ввести исходную информацию в столбцы исходной таблицы - значения входных переменных X 1 , Х 2 и выходной переменной Y .

    Подготовить дополнительно два столбца для ввода расчетных значений Y и остатков.

    Вызвать программу «Регрессия»: Данные/ Анализ данных/ Регрессия.

Рис. 1. Диалоговое окно «Анализ данных».

    Ввести в диалоговое окно «Регрессия» адреса исходных данных:

    входной интервал Y, входной интервал X (2 столбца),

    установить уровень надежности 95%,

    в опции «Выходной интервал, указать левую верхнюю ячейку места вывода данных регрессионного анализа (первую ячейку на 2-странице рабочего листа),

    включить опции «Остатки» и «График остатков»,

    нажать кнопку ОК для запуска регрессионного анализа.

Рис. 2. Диалоговое окно «Регрессия».

    Excel выведет 4 таблицы и 2 графика зависимости остатков от переменных Х1 и Х2 .

    Отформатировать таблицу «Вывод итогов» - расширить столбец с наименованиями выходных данных, сделать во втором столбце 3 значащие цифры после запятой.

    Отформатировать таблицу «Дисперсионный анализ»- сделать удобным для чтения и понимания количество значащих цифр после запятых, сократить наименование переменных и настроить ширину столбцов.

    Отформатировать таблицу коэффициентов уравнения - сократить наименование переменных и скорректировать при необходимости ширину столбцов, сделать удобным для чтения и понимания количество значащих цифр, удалить 2 последних столбца (значения и разметку таблицы).

    Данные из таблицы «Вывод остатка» перенести в подготовленные столбцы исходной таблицы, затем таблицу «Вывод остатка» удалить (опция «специальная вставка»).

    Ввести полученные оценки коэффициентов в исходную таблицу.

    Подтянуть таблицы результатов по максимуму вверх страницы.

    Построить под таблицами диаграммы Y эксп , Y расч и ошибки прогноза (остатка).

    Отформатировать диаграммы остатков. По полученным графикам оценить правильность модели по входам Х1, Х2 .

    Распечатать результаты регрессионного анализа.

    Разобраться с результатами регрессионного анализа.

    Подготовить отчет по работе.

ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

Прием выполнения регрессионного анализа в пакете EXCEL представлен на рисунках 3-5.

Рис. 3. Пример регрессионного анализа в пакете EXCEL.


Рис.4 . Графики остатков переменных Х1, Х2

Рис. 5. Графики Y эксп ,Y расч и ошибки прогноза (остатка).

По данным регрессионного анализа можно сказать:

1. Уравнение регрессии полученное с помощью Excel, имеет вид:

    Коэффициент детерминации:

Вариация результата на 46,5% объясняется вариацией факторов.

    Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.

Так как фактическое значение превышает табличное
, то делаем вывод, что полученной уравнение регрессии статистически значимо.

    Коэффициент множественной корреляции:

    b 0 :

t таб. (29, 0.975)=2.05

b 0 :

Доверительный интервал:

    Определяем доверительный интервал для коэффициента b 1 :

Проверка значимости коэффициента b 1 :

t рас. >t таб. , коэффициент b 1 является значимым

Доверительный интервал:

    Определяем доверительный интервал для коэффициентаb 2 :

Проверка значимости для коэффициентаb 2 :

Определяем доверительный интервал:

ВАРИАНТЫ ЗАДАНИЙ

Таблица 2. Варианты заданий

№ варианта

Результативный признак Y i

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 2

Y 2

Y 2

Y 2

Y 2

№ фактора X i

№ фактора X i

Продолжение таблицы 1

№ варианта

Результативный признак Y i

Y 2

Y 2

Y 2

Y 2

Y 2

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

№ фактора X i

№ фактора X i

Таблица 3. Исходные данные

Y 1

Y 2

Y 3

X 1

X 2

X 3

X 4

X 5

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Задачи регрессионного анализа.

    Предпосылки регрессионного анализа.

    Основное уравнение дисперсионного анализа.

    Что показывает F- отношение Фишера?

    Как определяется табличное значение критерия Фишера?

    Что показывает коэффициент детерминации?

    Как определить значимость коэффициентов регрессии?

    Как определить доверительный интервал коэффициентов регрессии?

    Как определить расчетные значение t-критерия?

    Как определить табличное значение t-критерия?

    Сформулируйте основную идею дисперсионного анализа, для решения каких задач он наиболее эффективен?

    Каковы основные теоретические предпосылки дисперсионный анализ?

    Произведите разложение общей суммы квадратов отклонений на составляющие в дисперсионном анализе.

    Как получить оценки дисперсий из сумм квадратов отклонений?

    Как получаются необходимые числа степеней свободы?

    Как определяется стандартная ошибка?

    Поясните схему двухфакторного дисперсионного анализа.

    Чем отличается перекрестная классификация от иерархической классификации?

    Чем отличаются сбалансированные данные?

Отчет оформляется в текстовом редакторе Word на бумаге формата А4 ГОСТ 6656-76 (210х297 мм) и содержит:

    Название лабораторной работы.

    Цель работы.

  1. Результаты вычисления.

ВРЕМЯ, ОТВЕДЕННОЕ НА ВЫПОЛНЕНИЕ

ЛАБОРАТОРНОЙ РАБОТЫ

Подготовка к работе – 0,5 акад. часа.

Выполнение работы – 0,5 акад. часа.

Расчеты на ЭВМ – 0,5 акад. часа.

Оформление работы – 0,5 акад. часа.

ЛитЕратура

    Идентификация объектов управления. / А. Д. Семенов, Д. В. Артамонов, А. В. Брюхачев. Учебное пособие. - Пенза: ПГУ, 2003. - 211 с.

    Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTIC и EXCEL. / Вуколов Э.А. Учебное пособие. - М.: ФОРУМ, 2008. - 464 с.

    Основы теории идентификации объектов управления. / А.А. Игнатьев, С.А. Игнатьев. Учебное пособие. - Саратов: СГТУ, 2008. - 44 с.

    Теория вероятности и математическая статистика в примерах и задачах с применением EXCEL. / Г.В. Горелова, И.А. Кацко. - Ростов н/Д: Феникс, 2006.- 475 с.

    Цель работы 2

    Основные понятия 2

    Порядок выполнения работы 6

    Пример выполнения работы 9

    Вопросы для самоконтроля 13

    Время, отведенное на выполнение работы 14

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?