Подпишись и читай
самые интересные
статьи первым!

Типы и виды данных. Шкалы измерения

Каждое измерение над объектом производится в определенной шкале. Различные координаты одного вектора наблюдений могут быть выражены в разных шкалах. Так, в § 5.1 приведен пример вектора наблюдений (табл. 5.1), у которого первые координаты носят характер условных меток (социальная принадлежность семьи, пол и профессия главы семьи, качество жилищных условий), в то время как остальные выражаются числами (число членов семьи, количество детей, среднегодовой доход и т. п.). Свойства этих шкал сильно различаются между собой. Так, про пол главы семьи можно сказать только, что он или мужской или женский и что пол мужской отличается от пола женского; про жилищные условия - что они совпадают или отличаются и что в отдельных случаях одни жилищные условия лучше других; про расходы можно сказать, что расходы на питание одной семьи меньше, равны, больше расходов другой, можно оценить разность в расходах между семьями и подсчитать, во сколько раз расходы одной семьи отличаются от расходов другой.

Ниже описываются основные типы шкал и математические приемы унификации данных, выраженных в разных шкалах, которые обычно предшествуют применению методов многомерного анализа.

10.2.1. Номинальная шкала.

Эта шкала используется только для того, чтобы отнести индивидуум, объект в определенный класс. Если описаны заранее возможные классы и правила отнесения объекта в них, то говорят о категоризованной шкале, если нет, то о некатегоризованной. Примером категоризованной шкалы является пол. В исследовании индивидууму приписывается одно из двух значений: буква М или Ж, специальный знак или число 1 или 2. В принципе можно было бы приписывать и другие буквы и цифры, важно только, чтобы сохранялось взаимно-однозначное соответствие между кодами. Для ввода категоризованных данных удобно использовать «меню», т. е. перечень возможных категорий с их кодами. Примерами некатегоризованных номинальных переменных являются имя, фамилия, место рождения.

Другой важный источник некатегоризованных номинальных данных указан в § 5.3. Это случай, когда наблюдение задается над парой объектов, и переменная указывает только, принадлежат ли объекты, к одному классу или нет, и не указывает, к каким классам они принадлежат.

Последнее обстоятельство не надо рассматривать в качестве курьеза. Конечно, если классы заранее определены и нетрудно каждый объект отнести в определенный класс, то это следует сделать и записать, к какому классу объект принадлежит. Но иногда классы заранее не описаны, создание их полной классификации как раз и является целью работы, а вместе с тем оценить принадлежность объектов одному классу можно. Например, можно говорить о «близком», «похожем» течении болезни у двух больных, хотя все варианты течения заболевания и не описаны. Более того, выделение эмпирически близких вариантов течения болезни может служить отправным пунктом для выделения и описания всех возможных вариантов развития патологического процесса. То же относится к выделению социально-экономических групп и т. п.

Одна и та же переменная может в зависимости от цели использования выступать в разных качествах. Так, например, некатегоризованная номинальная переменная - имя программы - служит только для индивидуализации программы и, если программ немного, может быть найдена прямым просмотром списка программ. Вместе с тем если имена программ в списке каким-либо образом упорядочить (например, в алфавитно-цифровом порядке), то имя программы как поисковый образ несет в себе элементы порядковой величины. Про каждые два имени можно сказать, что они или совпадают, или одно из них предшествует другому при принятом способе упорядочивания. При изменении способа упорядочивания меняется и отношение следования.

Арифметические операции над величинами, измеренными в номинальной шкале, лишены смысла. Следовательно, и медиана, и среднее арифметическое не могут быть использованы в качестве осмысленной меры центральной тенденции. Более подходящая статистика здесь мода.

10.2.2. Порядковая (ординальная) шкала.

В дополнение к функции отнесения объектов в определенный класс эта шкала также упорядочивает классы по степени выраженности заданного свойства. Каждому классу приписывается свой собственный символ таким образом, чтобы заранее установленный порядок символов соответствовал порядку классов. Так, если классам будут приписаны числовые значения, то классы будут упорядочены согласно числовой последовательности; если буквы, то классы будут упорядочены в алфавитном порядке, а если слова, то классы будут упорядочены согласно значениям слов.

Например, в § 5.3 приводится пример порядковой шкалы для описания качества жилищных условий с четырьмя градациями (классами): «плохое», «удовлетворительное», «хорошее», «очень хорошее». Естественно, что эти классы могли бы быть занумерованы числами 1,2,3,4, или 4,3,2,1, или буквами а,б,в,г и т. п.

Другими известными примерами порядковых шкал являются: в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско - Василенко - Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк -1, гипс - 2, кальцит - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которой минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров («штиль», «слабый ветер», «умеренный ветер» и т. д.).

Структура порядковой шкалы не разрушается при любом взаимно-однозначном преобразовании кодов, которое сохраняет порядок. Так же, как и в случае номинальной шкалы, арифметические операции не сохраняют своего смысла при преобразовании порядковых шкал, поэтому желательно ими не пользоваться. Нетрудно показать, что если опираться только на свойства шкал и не привлекать дополнительных, внешних по отношению к шкалам соображений, то единственными разрешенными статистиками при использовании порядковых шкал являются члены вариационного ряда .

10.2.3. Количественные шкалы.

Шкала, в которой можно отразить, на сколько по степени выраженности заданного свойства один из объектов отличается от другого, называется интервальной. Для того чтобы задать интервальную шкалу, надо определить объекты, соответствующие начальной точке и единице измерения. И далее при измерении ставить в соответствие каждому объекту число, показывающее, на сколько единиц измерения этот объект отличается от объекта, принятого за начальную точку. Простейшим примером интервальной шкалы является температура в градусах Цельсия, где 0° - начальная точка и 1° - единица измерения.

Структура интервальной шкалы не меняется при линейных преобразованиях вида Эффект такого преобразования заключается в сдвиге начальной точки на b единиц и умножении единицы измерения на а.

Например, путем преобразования , где - температура в можно перейти к температуре в градусах Фаренгейта.

Если начало в интервальной шкале является абсолютной нулевой точкой, то возникает возможность отразить в шкале, во сколько раз одно измерение отличается от другого. Соответствующая шкала называется шкалой отношений. Шкала отношений допускает преобразования вида . Большинство шкал, используемых в физике, являются либо интервальными (для измерения температуры, потенциальной энергии), либо шкалами отношений (для измерения времени, массы тела, заряда, расстояния).

Поскольку количественные шкалы допускают арифметические преобразования, среднее арифметическое может использоваться для описания интегральной тенденции в группировке данных.

10.2.4. Унифицированное представление разнотипных данных.

Каждому типу шкалы соответствует своя статистическая техника. Так, для переменных, измеренных в номинальной шкале, можно использовать -критерий для полиномиальных распределений, -критерий для проверки отсутствия ассоциаций в таблицах сопряженности, критерии для проверки гипотез о вероятности в биномиальном распределении. Порядковой шкале отвечают методы, основанные на использовании рангов (ранговая корреляция, непараметрические критерии для проверки гипотез типа ) и т. п.). При интервальной шкале может быть использован весь арсенал статистических методов.

Более того, разработаны статистические процедуры для случаев, когда наблюдаются векторы, одни координаты которых измерены в одной шкале, а другие - в другой. Типичным примером является обычный дисперсионный анализ (см. § 3.5), в котором факторы измеряются в номинальной шкале, а соответствующие их комбинациям отклики - в интервальной.

Тем не менее в целом ряде статистических методов, особенно в современных методах многомерного анализа, предполагается, что данные измерены в однотипных шкалах. Чтобы иметь возможность применять эти методы в общем случае разнотипных данных, были предложены различные приемы унификации данных. Познакомимся с важнейшими из них.

Сведение к двоичным переменным. В основе этого метода лежит введение вместо каждой исходной случайной переменной серии случайных величин, принимающих только два значения: 0 и 1.

Для номинальной величины имеющей k градаций вводится k таких величин что когда когда

Этот же прием иногда используют и при сведении к двоичным переменным случайной величины, измеренной в порядковой шкале. Однако в ряде случаев оказывается удобным выделять не событие , а событие Для сравнения относительных достоинств этих двух способов рассмотрим следующую модельную задачу. Пусть - равномерно распределенная на отрезке случайная величина, - малое число;

Функция моделирует, очевидно, первый способ перехода к двоичным переменным, а функция - второй. После несложных подсчетов получаем:

Основной недостаток изложенной техники - это введение большого числа новых переменных и частичная потеря информации, содержащейся в данных, как из-за квантования, так и из-за искусственного снижения уровня используемой шкалы.

Оцифровка номинальных и порядковых переменных. Этот метод прямо противоположен только что изложенному, в нем все переменные поднимаются, подтягиваются до уровня количественных путем приписывания их градациям числовых значений. Иногда приписываемые значения называют метками.

Выбор меток существенно зависит от цели, с которой производится оцифровка. Так, если изучается величина связи между двумя номинальными признаками, то метки можно выбрать из условия максимизации коэффициента корреляции между ними , . Если речь идет об отнесении наблюдений к одному из заранее определенных классов (дискриминантный анализ), то выбор меток можно связать с условием максимизации нормированного расстояния в многомерном выборочном пространстве между центрами изучаемых популяций (расстояния Махаланобиса). Иногда эту задачу упрощают и метки приписываются покоординатно так, чтобы максимизировать только нормированное расстояние между средними значениями данной координаты. Статистическое сравнение на примере одной частной задачи эффективности глобального и покоординатного подхода к оцифровке в дискриминантном анализе может быть найдено в .

Изложенные приемы оцифровки, когда метки выбираются из условия максимизации соответствующим образом подобранного функционала, укладываются в рамки упомянутого в § 1.2 экстремального подхода к формулировке основных проблем математической статистики.

В целом оцифровка качественных переменных является задачей сложной как в вычислительном, так и в чисто статистическом плане. Отдельные аспекты этой проблемы обсуждаются в работах .


Страница 1

Применение тех или других статистических методов определяется тем, к какой статистической шкале относится полученный материал. С. Стивенс предложил различать четыре статистические шкалы:

1. шкалу наименований (или номинальную);

2. шкалу порядка;

3. шкалу интервалов;

4. шкалу отношений.

Зная типические особенности каждой шкалы, нетрудно установить, к какой из них следует отнести подлежащий статистической обработ­ке материал.

Шкала наименований. К этой шкале относятся материалы, в ко­торых изучаемые объекты отличаются друг от друга по их качеству.

При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характери­стик. В принципе, объекты можно располагать в любой последователь­ности.

Вот пример: изучается состав международной научной конференции. Среди участников есть французы, англичане, датчане, немцы и русские. Имеет ли значение порядок, в котором будут расположены участники при изучении состава конференции? Можно расположить их по алфавиту, это удобно, но ясно, что никакого принципиального значения в этом распо­ложении нет. При переводе этих материалов на другой язык (а значит и на другой алфавит) этот порядок будет нарушен. Можно расположить национальные группы по числу участников. Но при сравнении этого ма­териала с материалом другой конференции найдем, что вряд ли этот порядок окажется таким же. Отнесенные к шкале наименований объек­ты можно размещать в любой последовательности в зависимости от цели исследования.

При статистической обработке такого рода материалов нужно счи­таться с тем, каким числом единиц представлен каждый объект. Име­ются весьма эффективные статистические методы, позволяющие по этим числовым данным прийти к научно значимым выводам (напри­мер, метод хи-квадрат).

Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка - это видно из ее названия - именно на эту последователь­ность переключается все внимание.

К этой шкале в статистике относят такие исследовательские ма­териалы, в которых рассмотрению подлежат объекты, принадлежа­щие к одному или нескольким классам, но отличающиеся при их сравне­нии одного с другим - «больше-меньше», «выше-ниже»- и т. п.

Проще всего показать типические особенности шкалы порядка, если об­ратиться к публикуемым итогам любых спортивных соревнований. В этих итогах последовательно перечисляются участники, занявшие соответ­ственно первое, второе, третье и следующие по порядку места. Но в этой информации об итогах соревнований нередко отсутствуют или отходят на второй план сведения о фактических достижениях спортсменов, а на первый план ставятся их порядковые места.

Допустим, шахматист Д. занял в соревнованиях первое место. Како­вы же его достижения? Оказывается, он набрал 12 очков. Шахматист Е. занял второе место. Его достижение - 10 очков. Третье место занял Ж. с восемью очками, четвертое - 3. с шестью очками и т. д. В сообщениях о соревновании разница в достижениях при размещении шахматистов отходит на второй план, а на первом остаются их порядковые места. В том, что именно порядковому месту отводится главное значение, есть свой смысл. В самом деле, в нашем примере З. набрал шесть, а Д. - 12 очков. Это абсолютные их достижения - выигранные ими партии. Если попытаться истолковать эту разницу в достижениях чисто арифме­тически, то пришлось бы признать, что 3. играет вдвое хуже, чем Д. Но с этим нельзя согласиться. Обстоятельства соревнований не всегда про­сты, как не всегда просто и то, как провел их тот или другой участник. Поэтому, воздерживаясь от арифметической абсолютизации, ограничи­ваются тем, что устанавливают: шахматист 3. отстает от занявшего пер­вое место Д. на три порядковых места.

Социально-психологические причины и факторы дезадаптации у подростков
Отклоняющееся поведение подростков нельзя назвать только психологической проблемой. Оно осмысливается как комплексная социальная проблема. Основные причины отклоняющегося поведения людей вообще и подростков, в частности, объясняют различн...

Сознание и бессознательное в личности человека
Сознание не является единственным уровнем, на котором представлены психические процессы, свойства и состояния человека, далеко не все, что воспринимается и управляет поведением человека, актуально осознается им. Кроме сознания, у человека...

Практические рекомендации по оптимизации учебной деятельности в классах разного профиля.
На основании проведённого анализа литературы и анализа полученных результатов, мы разработали следующие рекомендации, которые помогут создать старшекласснику благоприятные условия для развития, самоактуализации, личностного роста, а, след...


5.2. Типы статистических шкал

В эмпирическом исследовании могут встречаться, к примеру, следующие переменные (указано их наиболее вероятное кодирование):

Пол 1 = мужской
2 = женский
Семейное положение 1 = холост/не замужем
2 = женат/замужем
3 = вдовец/вдова
4 = разведен(а)
Курение 1 = некурящий
2 = изредка курящий
3 = интенсивно курящий
4 = очень интенсивно курящий
Месячный доход 1 = до 3000 DM
2 = 3001 - 5000 DM
3 = более 5000 DM
Коэффициент интеллекта (I.Q.)
Возраст (лет)

Рассмотрим сначала графу "Пол" . Мы видим, что назначение соответствия цифр 1 и 2 обоим полам абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами. Мы, конечно, не имеем в виду, что женщины стоят на ступеньку ниже мужчин, или мужчины значат меньше, чем женщины. Следовательно, отдельным числам не соответствует никакою эмпирического значения. В этом случае говорят о переменных, относящихся к номинальной шкале . В нашем примере рассматривается переменная с номинальной шкалой, имеющая две категории. Такая переменная имеет еще одно название - дихотомическая .

Такая же ситуация и с переменной "Семейное положение" . Здесь также соответствие - между числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от Пола, эта переменная не является дихотомической - у нее четыре категории вместо двух. Возможности обработки переменных, относящихся к номинальной шкале очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Семейное положение, совершенно бессмысленен. Переменные, относящиеся к номинальной шкале часто используются для группировки, с помощью которых совокупная выборка разбивается по категориям этих переменных. В частичных выборках проводятся одинаковые статистические тесты, результаты которых затем сравниваются друг с другом.

В качестве следующего примера рассмотрим переменную "Курение" . Здесь кодовым цифрам присваивается эмпирическое значение в том порядке, в котором они расположены в списке. Переменная Курение, в итоге, сортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий - больше, чем умеренный курильщик и т.д. Такие переменные, для которых используются численные значения, соответствующие постепенному изменению эмпирической значимости, относятся к порядковой шкале .

Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего и изредка курящего и изредка курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим и изредка курящим и между изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты.

К классическими примерами переменных с порядковой шкалой относятся также переменные, полученные в результате объединения величин в классы, как "Месячный доход" в нашем примере.

Кроме частотного анализа, переменные с порядковой шкалой допускают также вычисление определенных статистических характеристик, таких как медианы. В некоторых случаях возможно вычисление среднего значения. Если должна быть установлена связь (корреляция) с другими переменными такого рода, для этой цели можно использовать коэффициент ранговой корреляции .

Для сравнения различных выборок переменных, относящихся к порядковой шкале, могут применяться непараметрические тесты , формулы которых оперируют рангами.

Рассмотрим теперь "Коэффициент интеллекта (IQ) ". Не только его абсолютные значения отображают порядковое отношение между респондентами, но и разница между двумя значениями также имеет эмпирическую значимость. Например, если у Ганса IQ равен 80, у Фрица - 120 и у Отто - 160, можно сказать, что Фриц в сравнении с Гансом настолько же интеллектуальнее насколько Отто в сравнении с Фрицем (а именно - на 40 единиц IQ). Однако, основываясь только на том, что значение IQ у Ганса в два раза меньше, чем у Отто, исходя из определения IQ нельзя сделать вывод, что Отто вдвое умнее Ганса.

Такие переменные, у которых разность (интервал) между двумя значениями имеет эмпирическую значимость, относятся к интервальной шкале . Они могут обрабатываться любыми статистическим методами без ограничений. Так, к примеру, среднее значение является полноценным статистическим показателем для характеристики таких переменных.

Наконец, мы достигли наивысшей статистической шкалы, на которой эмпирическую значимость приобретает и отношение двух значений. Примером переменной, относящейся к такой шкале является "Возраст ": если Максу 30 лет, а Морицу 60, можно сказать, что Мориц вдвое старше Макса. Шкала, к которой относятся данные называется шкалой отношений . К этой шкале относятся все интервальные переменные, которые имеют абсолютную нулевую точку. Поэтому переменные относящиеся к интервальной шкале, как правило, имеют и шкалу отношений.

Подводя итоги, можно сказать, что существует четыре вида статистических шкал, на которых могут сравниваться численные значения:

На практике, в том числе в SPSS, различие между переменными, относящимися к интервальной шкале и шкале отношений обычно несущественно. То есть в дальнейшем практически всегда речь будет идти о переменных, относящихся к интервальной шкале .

1.1.2. Основные шкалы измерения

Почему необходима теория измерений? Теория измерений (в дальнейшем сокращенно ТИ) является одной из составных частей прикладной статистики. Она входит в состав статистики объектов нечисловой природы .

Использование чисел в жизни и хозяйственной деятельности людей отнюдь не всегда предполагает, что эти числа можно складывать и умножать, производить иные арифметические действия. Что бы вы сказали о человеке, который занимается умножением телефонных номеров? И отнюдь не всегда 2+2=4. Если вы вечером поместите в клетку двух животных, а потом еще двух, то отнюдь не всегда можно утром найти в этой клетке четырех животных. Их может быть и много больше - если вечером вы загнали в клетку овцематок или беременных кошек. Их может быть и меньше - если к двум волкам вы поместили двух ягнят. Числа используются гораздо шире, чем арифметика.

Так, например, мнения экспертов часто выражены в порядковой шкале (подробнее о шкалах говорится ниже), т.е. эксперт может сказать (и обосновать), что один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или убывания) интенсивности интересующей организаторов экспертизы характеристики. Ранг - это номер (объекта экспертизы) в упорядоченном ряду значений характеристики у различных объектов. Такой ряд в статистике называется вариационным. Формально ранги выражаются числами 1, 2, 3, ..., но с этими числами нельзя делать привычные арифметические операции. Например, хотя в арифметике 1 + 2 = 3, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении, интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не всем известная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Это и есть ТИ.

При чтении литературы надо иметь в виду, что в настоящее время термин "теория измерений" применяется для обозначения целого ряда научных дисциплин. А именно, классической метрологии (науки об измерениях физических величин), рассматриваемой здесь ТИ, некоторых других направлений, например, алгоритмической теории измерений. Обычно из контекста понятно, о какой конкретно теории идет речь.

Краткая история теории измерений. Сначала ТИ развивалась как теория психофизических измерений. В послевоенных публикациях американский психолог С.С. Стивенс основное внимание уделял шкалам измерения. Во второй половине ХХ в. сфера применения ТИ стремительно расширяется. Посмотрим, как это происходило. Один из томов выпущенной в США в 1950-х годах "Энциклопедии психологических наук" назывался "Психологические измерения". Значит, составители этого тома расширили сферу применения РТИ с психофизики на психологию в целом. А в основной статье в этом сборнике под названием, обратите внимание, "Основы теории измерений", изложение шло на абстрактно-математическом уровне, без привязки к какой-либо конкретной области применения. В этой статье упор был сделан на "гомоморфизмах эмпирических систем с отношениями в числовые" (в эти математические термины здесь вдаваться нет необходимости), и математическая сложность изложения возросла по сравнению с работами С.С. Стивенса.

Уже в одной из первых отечественных статей по РТИ (конец 1960-х годов) было установлено, что баллы, присваиваемые экспертами при оценке объектов экспертизы, как правило, измерены в порядковой шкале. Отечественные работы, появившиеся в начале 1970-х годов, привели к существенному расширению области использования РТИ. Ее применяли к педагогической квалиметрии (измерению качества знаний учащихся), в системных исследованиях, в различных задачах теории экспертных оценок, для агрегирования показателей качества продукции, в социологических исследованиях, и др.

Итоги этого этапа были подведены в монографии . В качестве двух основных проблем РТИ наряду с установлением типа шкалы измерения конкретных данных был выдвинут поиск алгоритмов анализа данных, результат работы которых не меняется при любом допустимом преобразовании шкалы (т.е. является инвариантным относительно этого преобразования).

Метрологи вначале резко возражали против использования термина "измерение" для качественных признаков. Однако постепенно возражения сошли на нет, и к концу ХХ в. ТИ стала рассматриваться как общенаучная теория.

Шесть типов шкал. В соответствии с ТИ при математическом моделировании реального явления или процесса следует прежде всего установить типы шкал , в которых измерены те или иные переменные. Тип шкалы задает группу допустимых преобразований шкалы . Допустимые преобразования не меняют соотношений между объектами измерения. Например, при измерении длины переход от аршин к метрам не меняет соотношений между длинами рассматриваемых объектов - если первый объект длиннее второго, то это будет установлено и при измерении в аршинах, и при измерении в метрах. Обратите внимание, что при этом численное значение длины в аршинах отличается от численного значения длины в метрах - не меняется лишь результат сравнения длин двух объектов.

Укажем основные виды шкал измерения и соответствующие группы допустимых преобразований.

В шкале наименований (другое название этой шкалы - номинальная ; это - переписанное русскими буквами английское название шкалы) допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются лишь как метки. Примерно так же, как при сдаче белья в прачечную, т.е. лишь для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Номера страховых свидетельств государственного пенсионного страхования, медицинского страхования, ИНН (индивидуальный номер налогоплательщика) измерены в шкале наименований. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Никому в здравом уме не придет в голову складывать или умножать номера телефонов, такие операции не имеют смысла. Сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Во многих случаях только это от них и требуется. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел.

В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго возрастающие преобразования.

Установление типа шкалы, т.е. задания группы допустимых преобразований шкалы измерения - дело специалистов соответствующей прикладной области. Так, оценки привлекательности профессий мы в монографии , выступая в качестве социологов, считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с нами, полагая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.

Оценки экспертов, как уже отмечалось, часто следует считать измеренными в порядковой шкале. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.

Почему мнения экспертов естественно выражать именно в порядковой шкале? Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.

В различных областях человеческой деятельности применяется много других видов порядковых шкал. Так, например, в минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Минерал с большим номером является более твердым, чем минерал с меньшим номером, при нажатии царапает его.

Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. Очевидно, нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком - такое бывает и в Москве) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).

В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону), и т.д. Все эти шкалы построены по схеме: заболевание не обнаружено; первая стадия заболевания; вторая стадия; третья стадия… Иногда выделяют стадии 1а, 1б и др. Каждая стадия имеет свойственную только ей медицинскую характеристику. При описании групп инвалидности числа используются в противоположном порядке: самая тяжелая - первая группа инвалидности, затем - вторая, самая легкая - третья.

Номера домов также измерены в порядковой шкале - они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.

При оценке качества продукции и услуг, в т.н. квалиметрии (буквальный перевод: измерение качества) популярны порядковые шкалы. А именно, единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) - есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Аналогичный смысл имеет сортность продукции - высший сорт, первый сорт, второй сорт,…

При оценке экологических воздействий первая, наиболее обобщенная оценка - обычно порядковая, например: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье.

Порядковая шкала используется и во многих иных областях. В эконометрике это прежде всего различные методы экспертных оценок. (см. посвященный им материал в части 3).

Все шкалы измерения делят на две группы - шкалы качественных признаков и шкалы количественных признаков.

Порядковая шкала и шкала наименований - основные шкалы качественных признаков . Поэтому во многих конкретных областях результаты качественного анализа можно рассматривать как измерения по этим шкалам.

Шкалы количественных признаков - это шкалы интервалов, отношений, разностей, абсолютная . По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0 С = 5/9 (0 F - 32), где 0 С - температура (в градусах) по шкале Цельсия, а 0 F - температура по шкале Фаренгейта.

Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений. В них есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Примером является пересчет цен из одной валюты в другую по фиксированному курсу. Предположим, мы сравниваем экономическую эффективность двух инвестиционных проектов, используя цены в рублях. Пусть первый проект оказался лучше второго. Теперь перейдем на валюту самой экономически мощной державы мира - юани, используя фиксированный курс пересчета. Очевидно, первый проект должен опять оказаться более выгодным, чем второй. Это очевидно из общих соображений. Однако алгоритмы расчета не обеспечивают автоматически выполнения этого очевидного условия. Надо проверять, что оно выполнено. Результаты подобной проверки для средних величин описаны ниже (раздел 2.1.3).

В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей , если год (или сутки - от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета указать нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии , разработанной группой известного историка акад. РАН А.Т.Фоменко, Господь Иисус Христос родился примерно в 1054 г. по принятому ныне летоисчислению в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).

Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.

Обсуждение шкал измерения будет продолжено далее в более широком контексте – как одного из понятий статистики нечисловых данных.

Предыдущая

794. Орлов А.И. Теория измерений как часть методов анализа данных: размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона // Социология: методология, методы, математическое моделирование. 2012. № 35. С. 155-174.
А.И. Орлов

(Москва)
МЕСТО ТЕОРИИ ИЗМЕРЕНИЙ В МЕТОДАХ АНАЛИЗА ДАННЫХ 1


Согласно современной парадигме прикладной статистики, теория измерений является неотъемлемой частью методов анализа данных. По мнению П.Ф. Веллемана и Л. Уилкинсона , применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам». В статье приведены краткие сведения о шкалах измерения и применении теории измерений при выборе средних величин с соответствии с шкалами измерения данных, а затем скрупулезно анализируются аргументы П.Ф. Веллемана и Л. Уилкинсона. Итог дискуссии: «теория измерений важна для интерпретации статистического анализа» . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных): выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных; разделены области применения разведочного анализа и доказательной статистики.
Ключевые слова : теория измерений, анализ данных, прикладная статистика, шкалы измерения, допустимые преобразования, инвариантность выводов.
Методы анализа данных (другими словами, прикладная статистика, статистические методы) необходимы социологу для обработки результатов массовых обследований, а также для подведения итогов экспертных опросов . Эта научная область бурно развивается. Согласно новой парадигме прикладной статистики, теория измерений является неотъемлемой частью современных методов анализа данных . В наших учебниках (, и др.) рассказано о теории измерений и ее применении при выборе адекватных методов анализа данных.

Есть и другие мнения о целесообразности использования теории измерений при анализе социологических данных. Основная идея статьи П.Ф. Веллемана и Л. Уилкинсона выражена в ее названии. По их мнению, применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам» .

Прежде чем разбирать аргументы П.Ф. Веллемана и Л. Уилкинсона, целесообразно привести краткие сведения о предмете дискуссии, в частности, определить используемые нами термины и сформулировать основные положения в стиле отечественной вероятностно-статистической школы, основоположником которой является А.Н. Колмогоров, превративший теорию вероятностей и математическую статистику в раздел математики. При этом уточняем изложение в и описываем применение теории измерений в теории средних величин, позволившее создать стройную и окончательную систему средних.
Основы теории измерений
Теория измерений исходит из того, что арифметические действия с используемыми в практической работе числами не всегда имеют смысл. Например, зачем складывать или умножать номера телефонов? Далее, не всегда выполнены привычные арифметические соотношения. Например, сумма знаний двух двоечников не равна знаниям «хорошиста», т.е. для оценок знаний 2+2 не равно 4. Приведенные примеры показывают, что практика использования чисел для описания результатов наблюдений (измерений, испытаний, анализов, опытов) заслуживает методологического анализа.

Основные шкалы измерения. Наиболее простой способ использования чисел - применение их для различения объектов. Например, телефонные номера нужны для того, чтобы отличать одного абонента от другого. При таком способе измерения используется только одно отношение между числами - равенство (два объекта описываются либо равными числами, либо различными). Соответствующую шкалу измерения называют шкалой наименований (при использовании термина на основе латыни - номинальной шкалой; иногда называют также классификационной шкалой). В этой шкале измерены штрих-коды товаров, номера паспортов, ИНН (индивидуальные номера налогоплательщиков) и многие иные величины, выраженные числами. С прикладной точки зрения шкала измерения - это способ приписывания чисел рассматриваемым объектам, соответствующий имеющимся между объектами отношениям.

Отметим, что числа могут быть приписаны объектам разными способами. Переход от одного способа к другому наблюдаем при замене паспортов или телефонных номеров. Каковы свойства допустимых преобразований? Для шкалы наименований естественно потребовать только взаимной однозначности. Другими словами, применив к результатам измерений взаимно-однозначное преобразование, получаем новую шкалу, столь же хорошо описывающую систему исходных объектов, как и прежняя шкала.

Шесть основных типов шкал измерения описаны в табл.1.
Таблица 1. Основные шкалы измерения.


Тип шкалы

Определение шкалы

Примеры

Группа допустимых преобразований

Шкалы качественных признаков

Наименований

Числа используют для различения объектов

Номера телефонов, паспортов, ИНН, штрих-коды

Все взаимно-однозначные преобразования

Порядковая

Числа используют для упорядочения объектов

Оценки экспертов, баллы ветров, отметки в школе, полезность, номера домов

Все строго возрастающие преобразования

Шкалы количественных признаков

(описываются началом отсчета и единицей измерения)



Интервалов

Начало отсчета и единица измерения произвольны

Потенциальная энергия, положение точки, температура по шкалам Цельсия и Фаренгейта

Все линейные преобразования φ(x ) = ax + b ,

a и b произвольны, а >0


Отношений

Начало отсчета задано, единица измерения произвольна

Масса, длина, мощность, напряжение, сопротивление, температура по Кельвину, цены

Все подобные преобразования φ(x ) = ax ,

а произвольно, а >0


Разностей

Начало отсчета произвольно, единица измерения задана

Время

Все преобразования сдвига φ(x ) = x + b ,

b произвольно


Абсолютная

Начало отсчета и единица измерения заданы

Число людей в данном помещении

Только тождественное преобразование φ(x ) = x

Кроме перечисленных в табл.1, используют и иные типы шкал . Отметим, что в табл.1 выражение «единица измерения произвольна» означает, что она может быть выбрана по соглашению специалистов, но не вытекает из каких-либо фундаментальных соотношений. При измерении времени естественная единица измерения задается периодами обращения небесных тел. Начало отсчета при измерении длины задается длиной отрезка, у которого начало и конец совпадают, и т.д.

В настоящее время считается необходимым перед применением тех или иных алгоритмов анализа данных установить, в шкалах каких типов измерены рассматриваемые величины. При этом с течением времени тип шкалы измерения определенной величины может меняться. Например, температура сначала измерялась в порядковой шкале (теплее - холоднее). После изобретения термометров она стала измеряться в шкале интервалов (по шкалам Цельсия, Фаренгейта или Реомюра). Температура С по шкале Цельсия выражается через температуру F по шкале Фаренгейта с помощью линейного преобразования

С открытием абсолютного нуля температур стал возможным переход к шкале отношений (шкала Кельвина).

Требование инвариантности (адекватности) выводов. Выяснение типов используемых шкал необходимо для адекватного выбора методов анализа данных. Основополагающим требованием является независимость выводов от того, какой именно шкалой измерения воспользовался исследователь (среди всех шкал, переходящих друг в друга при допустимых преобразованиях). Например, если речь о длинах, то выводы не должны зависеть от того, измерены ли длины в метрах, аршинах, саженях, футах или дюймах.

Другими словами, выводы должны быть инвариантны относительно группы допустимых преобразований шкалы измерения. Только тогда их можно назвать адекватными, т.е. избавленными от субъективизма исследователя, выбирающего определенную шкалу из множества шкал заданного типа, связанных допустимыми преобразованиями.

Требование инвариантности выводов накладывает ограничения на множество возможных алгоритмов анализа данных. В качестве примера рассмотрим порядковую шкалу. Одни алгоритмы анализа данных позволяют получать адекватные выводы, другие - нет. Например, в задаче проверки однородности двух независимых выборок алгоритмы ранговой статистики (т.е. использующие только ранги результатов измерений) дают адекватные выводы, а статистики Крамера-Уэлча и Стьюдента - нет. Значит, для обработки данных, измеренных в порядковой шкале, критерии Смирнова и Вилкоксона можно использовать, а критерии Крамера-Уэлча и Стьюдента - нет.
Выбор средних величин в соответствии со шкалами измерения
Требование инвариантности является достаточно сильным. Из многих алгоритмов анализа статистических данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.

Средние по Коши. Среди всех методов анализа данных важное место занимают алгоритмы усреднения. Еще в 1970-х годах удалось полностью выяснить, какими видами средних можно пользоваться при анализе данных, измеренных в тех или иных шкалах.

Пусть Х 1 , Х 2 ,…, Х n - выборка объема n . Наиболее общее понятие средней величины введено французским математиком первой половины ХIХ в. О. Коши. Средней величиной (по Коши) является любая функция f (X 1 , X 2 ,...,X n ) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X 1 , X 2 ,...,X n , и не больше, чем максимальное из этих чисел. Средними по Коши являются среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое.

Средние величины используются обычно для того, чтобы заменить совокупность чисел (выборку) одним числом, а затем сравнивать совокупности с помощью средних. Пусть, например, Y 1 , Y 2 ,...,Y n - совокупность оценок экспертов (или респондентов), «выставленных» одному объекту экспертизы, Z 1 , Z 2 ,...,Z n - второму. Как сравнивать эти совокупности? Самый простой способ - по средним значениям.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в теории измерений). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f (X 1 , X 2 ,...,X n ) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f (Y 1 , Y 2 ,...,Y n ) (Z 1 , Z 2 ,...,Z n ).

Тогда согласно теории измерений для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g (из группы допустимых преобразований в соответствующей шкале) было справедливо также неравенство

f (g (Y 1), g (Y 2),...,g (Y n )) (Z 1), g (Z 2 ),...,g(Z n )),

т.е. среднее преобразованных значений из первой совокупности было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть выполнено для любых двух совокупностей Y 1 , Y 2 ,...,Y n и Z 1 , Z 2 ,...,Z n. И, напомним, для любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно теории измерений только допустимыми средними величинами можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой в монографии , удается описать вид допустимых средних величин в основных шкалах.

Средние величины в порядковой шкале. Рассмотрим обработку, для определенности, мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

Теорема 1, впервые полученная в статье , справедлива при условии, что среднее f (X 1 , X 2 ,...,X n ) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f (X 1 , X 2 ,...,X n ) не меняется. Это условие является вполне естественным, ибо среднюю величину находим для совокупности (множества) чисел, а не для последовательности . Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Можно применять выборочные квартили, минимум и максимум, децили и т.п. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

Средние по Колмогорову. Естественная система аксиом (требований к средним величинам) приводит к так называемым ассоциативным средним. Их общий вид нашел в 1930 г. А.Н. Колмогоров . Теперь их называют «средними по Колмогорову».

Для чисел X 1 , X 2 ,...,X n средним по Колмогорову является

G {(F (X 1) + F (X 2) +...+ F (X n ))/n },

где F - строго монотонная функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F . Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F (x ) = x , то среднее по Колмогорову - это среднее арифметическое, если F (x ) = ln x , то среднее геометрическое, если F (x ) = 1/x , то среднее гармоническое, если F (x ) = x , то среднее квадратическое, и т.д. (в последних трех случаях усредняются положительные величины).

Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В статье впервые доказаны следующие утверждения.

Теорема 2. В шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое.

Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия), потенциальных энергий или координат точек не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

Теорема 3. В шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с и среднее геометрическое.

Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F (x ) = e 2 x .

Замечание 1. Среднее геометрическое является пределом степенных средних при .

Замечание 2. Теоремы 1 и 2 справедливы при выполнении некоторых внутриматематических условий регулярности. Доказательства теорем 1-3 приведены в монографии . Перенос на случай взвешенных средних дан в статье .

Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, ). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий. Дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д. В статье рассмотрены дальнейшие результаты о средних величинах.

Согласно рассматриваемому подходу сначала надо установить, в каких шкалах измерены социологические данные, а затем использовать только инвариантные относительно этих шкал алгоритмы обработки данных.

В статье теория измерений именуется «ограничения Стивенса», порядковая шкала названа ординальной, шкала отношений – относительной, нет понятия «группа допустимых преобразований», и т.п. Будем пользоваться устоявшимися в прикладной статистике терминами . В целом же позиция сторонников использования теории измерений при анализе данных описана в верно.

На русском языке имеется достаточно много публикаций по теории измерений, написанных строго, квалифицированными авторами. Поскольку мы не ставим целью дать здесь обзор по теории измерений, отошлем читателей к работам и имеющимся там ссылкам на литературные источники.
Первые размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона
Эта статья написана в виде обзора различных публикаций, изложение идет на словесном уровне, строгие определения, формулы, таблицы, примеры почти отсутствуют. Поэтому приходится додумывать за авторов, что они хотели сказать. Не всегда удается придать точный смысл их высказываниям.

На с.173 выделено три направления критики:

1. Требование инвариантности выводов относительно допустимых преобразований шкал измерения «представляется опасным для анализа данных».

2. Подход на основе теории измерений «слишком строг, чтобы его можно было применять для реальных данных».

3. Этот подход «часто ведет к понижению уровня данных через их преобразования в ранги и последующее ненужное обращение к непараметрическим методам».

Начнем с разбора в общих терминах этих трех направлений критики.

1. Опасным для получения обоснованных выводов является, наоборот, отказ от требования инвариантности. Разве можно опираться на выводы, которые меняются при допустимом преобразовании шкалы?

Конечно, при первоначальном разведочном анализе данных можно их «прогнать» через весь арсенал имеющихся в программном продукте методов обработки – вдруг удастся что-нибудь интересное заметить? Полученные нестрогими методами «находки» необходимо затем проверить с помощью обоснованных процедур анализа данных .

Практика зачастую вынуждает использовать соображения теории измерений. Так, при проведении нашим научным коллективом опросов летного состава авиакомпании «Волга-Днепр» выяснилось, что пилотам легче сказать, какое событие встречается чаще, а какое реже, чем оценить число осуществлений событий на 1000 полетов. Проводить оценивание в абсолютной шкале (оценивать вероятности событий) пилоты не берутся, в то время как задачи сравнения событий по частоте встречаемости или оценки их по встречаемости условными баллами (значениями качественных признаков) не вызывают сложностей. Таким образом, полученные при опросах пилотов оценки измерены в порядковых шкалах.

2. При практической работе обычно вполне ясно, в каких шкалах измерены данные. Если попытаться навязать респондентам неправильную шкалу, их ответы будут произвольными, не отражающими истинных мнений, или же они могут попросту отказаться давать ответы, как это было в описанных выше опросах летного состава авиакомпании «Волга-Днепр».

Можно признать, что в отдельных редких случаях определение типа шкалы измерения данных требует специальных исследований.

3. Уже ко времени появления статьи П.Ф. Веллемана и Л. Уилкинсона (1993 г.) с помощью непараметрических методов можно было решать все те задачи анализа данных, для которых всё еще в отдельных работах используются параметрические методы. Согласно современной парадигме прикладной статистики , вместо параметрических методов, характерных для устаревшей парадигмы середины ХХ в., следует применять непараметрические методы.

Согласно современным взглядам, параметрические методы – это методы, основанные на вероятностно-статистических моделях, в которых распределения случайных величин принадлежат тому или иному из параметрических семейств – семейству нормальных, логарифмически-нормальных, гамма-распределений или иных, входящих в четырехпараметрическое семейство К. Пирсона, введенное им в начале ХХ в. Непараметрические методы исходят из распределений произвольного вида. «Преобразование в ранги» не обязательно при применении непараметрических методов. Оно соответствует случаю, когда данные измерены в порядковой шкале.

Как показали многочисленные исследования, почти все распределения реальных данных не принадлежат ни одному из известных параметрических семейств . Боязнь непараметрических методов не имеет рационального обоснования, она порождена предрассудками устаревшей парадигмы прикладной статистики середины ХХ в.

От анализа общих возражений против применения теории измерений при анализе социологических данных перейдем к рассмотрению конкретных примеров, приведенных П.Ф. Веллеманом и Л. Уилкинсоном. Чтобы не раздувать объем настоящей статьи, не будем повторять формулировки примеров, предполагая, что читатели имеют перед собой перевод их исходной статьи .

В критике Лорда выделим несколько составляющих. Во-первых, выбор типа шкалы может быть связан с решаемой задачей. Так, номера договоров предприятия служат прежде всего для того, чтобы различать эти договора (и связанные с ними действия), т.е. естественно принять, что они измерены в шкале наименований. Однако эти номера возрастают с течением времени (в соответствии с датами заключения договоров), поэтому в некоторых задачах принятия управленческих решений естественно считать, что они измерены в порядковой шкале. Во-вторых, при обработке порядковых данных с помощью алгоритмов, не являющимися инвариантными в порядковой шкале, может создаться впечатление, что получены обоснованные выводы. Лорд рассказывает о применении неравенства Чебышева (можно было использовать критерий Крамера-Уэлча ). Однако при применении той же процедуры анализа к данным, подвергнутым некоторому допустимому преобразованию в порядковой шкале, выводы будут прямо противоположными. Для обнаружения различия между двумя независимыми выборками следовало применить непараметрические критерии однородности, например, критерий Вилкоксона .

Бейкер, Хардик и Петринович, Боргатта и Боршштейн не хотят применять непараметрические методы, объяснений нет. Веллеман и Уилкинсон напрасно критикуют их за нежелание «связываться с проблемой робастности» . Робастные методы, т.е. устойчивые к малым отклонениям функций распределения данных, не позволяют справиться с произвольным допустимыми преобразованиями. Если же от робастности перейти к более общей системе понятий – к общей схеме устойчивости, то оказывается, что устойчивые к допустимым преобразованиям шкал методы анализа данных – это ранговые методы как частный случай непараметрических .

Гутман предлагает использовать «функцию потерь, выбранную для проверки качества модели» . Действительно, если задана функция потерь, то нет необходимости привлекать теорию измерений. Проблема в том, чтобы выбрать эту функцию, причем обоснованно. Ни с одним таким практиком за более чем 40 лет консультирования в области анализа данных мне встретиться не довелось. Тот, кто сможет выбрать функцию потерь, уже не практик, а квалифицированный специалист в области математической статистики.

По мнению Тьюки, «какое знание не основано на некоторой приблизительности» . Действительно, при первоначальном разведочном анализе одного взгляда на данные специалисту бывает достаточно для формулировки вывода. Однако и практики, и теоретики настаивают на том, чтобы интуитивные выводы были обоснованы строгими рассуждениями.
Дискуссия о статистиках и шкальных типах
Названный так раздел начинается словами: «Статистики отвергли запрет на методы, основанный на ограничениях, связанных с допустимыми преобразованиями». Это совершенно неверно. Статистики приняли этот запрет (см. обсуждения в ). Особенно ясно это сейчас, через 20 лет после написания статьи . В настоящее время сомнения остаются у некоторых из тех, кто не является профессионалом в области анализа данных, к тому же склонен к принятию простых решений и не хочет утруждать себя изучением теории измерений и непараметрической статистики. Такой настрой практиков вполне естественен и разумен, но не плодотворен. Современная прикладная статистика не является простой, для ее усвоения нужно приложить усилия и затратить время.

Приходится констатировать, что в статью включено большое количество категоричных утверждений, не подтвержденных аргументами и противоречащих практике анализа данных. На с.176 сказано: «Ключевой аргумент против использования предписания статистик на основе шкального типа гласит: это не работает!». Еще как работает – и на практике, и при развитии теории (в начальных разделах настоящей статьи показано, что теория измерений позволила придать теории средних законченный вид). На с.177 говорится, что «опыт показывает, что применение запрещенных статистик к данным приводит к научно значимым результатам, важным при принятии решений и ценным для дальнейших исследований». Примеров нет. Видимо, потому, что это утверждение неверно.

В часто используются термины без определений. Отечественного читателя может поразить заявление о «фундаментальной разнице между математикой и наукой» (с.176). В нашей стране согласно традиции и нормативным документам Минобразования и ВАК математика – одна из наук. Мы считаем, что статистические методы и анализ данных – это одно и то же. Именно поэтому наша крайняя книга называется «Статистические методы анализа данных» . Конечно, можно определить термины так, что математика не будет наукой, а анализ данных станет отличаться от математической статистики. Дискуссия о терминах – увлекательное занятие. Только в одной брошюре приведено около 200 определений термина «статистика». Однако ясно, что использование терминов без определений, как это сделано в , может только запутать читателя.
Различные виды данных
Нельзя не согласиться с Веллеманом и Уилкинсоном в том, что данные – это не всегда числа . Элементами выборок могут быть вектора, функции, различные виды объектов нечисловой природы – бинарные отношения, множества, нечеткие множества, интервалы и др. . Тем более это касается результатов расчетов, таких, как доли или набор точек на плоскости, полученных в результате многомерного шкалирования. Обратите внимание: при рассказе о применении теории измерений при анализе данных в начале этой статьи шла речь об инвариантности выводов, сделанных на основе обработки наборов чисел. Следовательно, теория измерений используется не во всех разделах прикладной статистики, а лишь при статистическом анализе числовых величин . Это замечание понадобится при дальнейшем разборе статьи .

Необходимо всегда различать разведочный статистический анализ, нацеленный на «интуитивное проникновение в закономерности массива данных» , и доказательную статистику, основанную на строгих рассуждениях. Именно к разведочному анализу относятся методы преобразования данных и многомерного шкалирования . При разведочном анализе соблюдать требования теории измерений не обязательно, а в доказательной статистике – наоборот.

В разделе «Хороший анализ данных не основан на допущениях о типе данных» Веллеман и Уилкинсон справедливо обращают внимание на важность правильного выбора статистической модели. В следующем разделе «Стивенсовские категории не описывают фиксированных свойств данных» речь фактически идет о том же: в ряде ситуаций «шкальный тип зависит от интерпретации данных или от наличия дополнительной информации» . Это утверждение совершенно верно, набор чисел сам по себе не дает возможности обосновать тип шкалы. Результат измерения равен 2911397 – какая шкала? Если это число из бухгалтерского отчета, то шкала отношений (переход от одной валюты к другой – подобное преобразование). Если же это число – из телефонного справочника, то номер телефона измерен в шкале наименований. На эту тему мы говорили ранее в связи с разбором работы Лорда . Итак, весьма важен выбор статистической модели, им определяются шкалы измерения данных.

В разделе «Категории Стивенса недостаточны для описания шкал данных» рассматриваются «многомерные шкалы». Что это такое – неясно, так как определений нет. Однако квазипрактический пример, заданный табл.1, достаточно понятен. Поскольку я пять лет проработал в медицинских учреждениях (в «кремлевской больнице» и в НИИ профессиональных заболеваний и гигиены труда АМН СССР), то отмечу, что число имеющихся у пациента симптомов нельзя рассматривать как показатель тяжести заболевания, поскольку подобное рассмотрение предполагает, что все симптомы равноценны по вкладу в тяжесть заболевания. Такого в медицине не бывает.

О чем идет речь в абзаце, посвященном работе Андерсона , остается неясным, поскольку определений используемых понятий нет.
Робастность, шкалы и анализ данных
В разделе «Статистические процедуры не могут классифицироваться по критериям Стивенса» Веллеман и Уилкинсон обсуждают обратную задачу (в терминологии ), в которой для заданной процедуры анализа данных требуется установить, в каких шкалах эта процедура дает инвариантные выводы. Действительно, нами доказано, что вывод о сравнении рассчитанных по двум выборкам значений линейной функции от порядковых статистик, заданной формулой (5) на с.185 , инвариантен в порядковой шкале, если только один весовой коэффициент отличен от 0 (см. и теорему 1 в начале статьи), и в шкале интервалов (и в шкалах с более узкими группами преобразований – отношений, разностей, абсолютной), если по крайней мере два весовых коэффициента отличны от 0 (см. ). Остальной текст этого раздела статьи не поддается интерпретации в строгих терминах. Отметим только, что рассматривается иная задача, чем раньше, - увязка процедур расчетов со шкалами измерения, а не установление типа шкалы измерения исходных данных.

В разделе «Шкальные типы – не точные категории» в очередной раз бездоказательно утверждается, что «реальные данные не удовлетворяют требованиям шкальных типов». Вместе с тем правильно отмечено, что при сомнениях «следует осуществить понижение уровня» шкалы, например, с интервальной до порядковой. В задаче, рассмотренной Тьюки в 1961 г., была бы полезна статистика интервальных данных, развиваемая с начала 1980-х годов .

В разделе «Шкалы и анализ данных» рассуждения построены на смешении разведочного статистического анализа, при котором можно не обращать внимание на шкалы, в которых измерены данные, и анализа данных на стадии получения строгих выводов, немыслимых без обращения к теории измерений. Странно, что Веллеман и Уилкинсон считают «хорошим» только разведочный анализ. Фраза: «Хороший анализ данных редко следует формальной парадигме проверки гипотезы» демонстрирует их нигилизм по отношению к математической статистике, который никак нельзя оправдать.

В разделе «Осмысленность» термин, давший название разделу, так и остался без определения. Как справедливо отмечают Веллеман и Уилкинсон, согласно теории измерений осмысленность – это то, что сохраняется при допустимых преобразованиях. Такое определение им не нравится, но дать другое они не могут, занимаясь общими рассуждениями о праве на ошибку. Странно читать такое: «Если бы наука была ограничена доказуемо осмысленными суждениями, она не смогла бы развиваться». Математика же успешно развивается!

Раздел «Роль типов данных» начинается неожиданно – с признания важности теории измерений: «Были бы ошибкой полагать, что типы данных не имеют значения… Понятие типа шкалы важно, а терминология Стивенса (т.е. теории измерений - А.О.) зачастую бывает удобна». Дальнейшие рассуждения снова посвящены констатации того, что, в нашей терминологии, тип шкалы определяется не самими данными, а моделью, соответствующей решаемой задаче (см. выше интерпретацию числа 2911397 как результата измерений в шкале отношений или в порядковой шкале в зависимости от постановки задачи). Вторая идея, которая также уже встречалась, - упор на разведочный анализ и умаление роли доказательной статистики.
Заключение
Раздел «Заключение» статьи написан взвешенно, высказанные в нем положения в целом справедливы. Как уже говорилось, нельзя считать, «что тип шкалы как бы самоочевиден и не зависит от того, какой вопрос ставит исследователь перед своими данными». За двадцать лет после написания статьи стало ясно, что после постановки вопроса исследователь должен описать модель анализа данных, обычно вероятностно-статистическую, включающую выбор типа шкал измерения данных, а затем в рамках этой модели разработать метод решения задачи или выбрать его из уже имеющихся .

Совершенно верно, что «статистическое программное обеспечение, способствующее любому анализу для любых данных, допускает и безответственный анализ». Об этом предупреждал В.В. Налимов более 40 лет назад . Он имел в виду прежде всего склонность к проведению расчетов без знакомства с сутью применяемых методов.

Анализ статьи закончен.

Подводя итоги настоящей статьи, необходимо констатировать пользу от сопоставления подходов теории измерений и критических замечаний по ее поводу, собранных в статье Веллемана и Уилкинсона . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных). Прежде всего, выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных, разделены области применения разведочного анализа и доказательной статистики. Подтвердилась справедливость пословицы: «В споре рождается истина».


ЛИТЕРАТУРА
1. Орлов А.И. Статистические методы в российской социологии (тридцать лет спустя) // Социология: методология, методы, математические модели. 2005. № 20. С.32-53.

2. Орлов А.И. Новая парадигма прикладной статистики // Заводская лаборатория. 2012. Том 78. №1, часть I. С.87-93.

3. Орлов А.И. Прикладная статистика. Учебник. - М.: Экзамен, 2006. - 672 с.

4. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Часть 1: Нечисловая статистика. – М.: Изд-во МГТУ им. Н.Э. Баумана. – 2009. – 541 с.

5. Веллеман П.Ф., Уилкинсон Л. Типология номинальных, ординальных, интервальных и относительных шкал вводит в заблуждение // Социология: методология, методы, математическое моделирование. 2011. № 33. С.166 – 193.

6. Толстова Ю.Н. Измерения в социологии. - М.: Инфра-М, 1998. - 352 с.

7. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.

8. Орлов А.И. Допустимые средние в некоторых задачах экспертных оценок и агрегирования показателей качества. // Многомерный статистический анализ в социально-экономических исследованиях. - М.: Наука, 1974. С. 388-393.

9. Колмогоров А.Н. Об определении среднего // Избр. труды. Математика и механика. М.: Наука, 1985. С. 136–138.

10. Орлов А.И. Допустимые преобразования в задаче сравнения средних. Пси-постоянные статистики. // Алгоритмы многомерного статистического анализа и их применения. - М.: Изд-во ЦЭМИ АН СССР, 1975. С.121-127.

11. Орлов А.И. Связь между средними величинами и допустимыми преобразованиями шкалы // Математические заметки. 1981. Т. 30. №4. С. 561–568.

12. Барский Б.В., Соколов М.В. Средние величины, инвариантные относительно допустимых преобразований шкалы измерения // Заводская лаборатория. 2006. Том 72. №1. С.59-66.

13. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Ч.3. Статистические методы анализа данных. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 624 с.

14. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина «статистика». – М.: МГУ, 1972. – 46 с.

15. Налимов В.В. О преподавании математики экспериментаторам // О преподавании математической статистики экспериментаторам. Препринт Межфакультетской лаборатории статистических методов №17. – М.: Изд-во МГУ им. М.В. Ломоносова, 1971. – С.5-39.

1Александр Иванович Орлов, профессор, доктор экономических наук, доктор технических наук, кандидат физико-математических наук, директор Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана, профессор МФТИ, советник президента группы авиакомпаний «Волга-Днепр», президент Российской ассоциации статистических методов. E-mail: prof - orlov @ mail . ru .

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках Постановления Правительства РФ № 218.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?