Подпишись и читай
самые интересные
статьи первым!

Как привести комплексное число к алгебраической форме. Комплексные числа

Страница 2 из 3

Алгебраическая форма комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел.

С алгебраической формой комплексного числа мы уже познакомились, – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.

Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.

Сложение комплексных чисел

Пример 1

Сложить два комплексных числа ,

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:

Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.

Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса: – от перестановки слагаемых сумма не меняется.

Вычитание комплексных чисел

Пример 2

Найти разности комплексных чисел и , если ,

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .

Рассчитаем вторую разность:


Здесь действительная часть тоже составная:

Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3

Найти произведение комплексных чисел ,

Очевидно, что произведение следует записать так:

Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что и быть внимательным .

Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Я распишу подробно:

Надеюсь, всем было понятно, что

Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках.

Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .

В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.

Деление комплексных чисел

Пример 4

Даны комплексные числа , . Найти частное .

Составим частное:

Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение .

Вспоминаем бородатую формулу и смотрим на наш знаменатель : . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть

Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число :

Распишу подробно:

Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .

В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:

Редко, но встречается такое задание:

Пример 5

Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ).

Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на :

На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны , соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что .

Тригонометрическая и показательная форма комплексного числа

В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы, методический материал можно найти на странице Математические формулы и таблицы . Без таблиц далеко не уехать.

Любое комплексное число (кроме нуля) можно записать в тригонометрической форме:
, где – это модуль комплексного числа , а – аргумент комплексного числа . Не разбегаемся, всё проще, чем кажется.

Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что :

Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа стандартно обозначают: или

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений «а» и «бэ».

Примечание : модуль комплексного числа представляет собой обобщение понятия модуля действительного числа , как расстояния от точки до начала координат.

Аргументом комплексного числа называется угол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: .

Рассматриваемый принцип фактически схож с полярными координатами , где полярный радиус и полярный угол однозначно определяют точку.

Аргумент комплексного числа стандартно обозначают: или

Из геометрических соображений получается следующая формула для нахождения аргумента:
. Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-й и не 4-й координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7

Выполним чертёж:

На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа:

Запомним намертво, модуль – длина (которая всегда неотрицательна ), аргумент – угол .

1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме: .

Ясно, как день, обратное проверочное действие:

2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: .

Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .
Очевидно, что (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: .

Проверка:

4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно: . Проверка:

Однако более стандартно следующее правило: Если угол больше 180 градусов , то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить, что и – это один и тот же угол.

Таким образом, запись принимает вид:

Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций . И комплексные числа усвоятся заметно легче!

В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...». Это действительно очевидно и легко решается устно.

Перейдем к рассмотрению более распространенных случаев. Как я уже отмечал, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число . При этом возможны три варианта (их полезно переписать к себе в тетрадь):

1) Если (1-я и 4-я координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле .

2) Если (2-я координатная четверть), то аргумент нужно находить по формуле .

3) Если (3-я координатная четверть), то аргумент нужно находить по формуле .

Пример 8

Представить в тригонометрической форме комплексные числа: , , , .

Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить . Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета.

Эх, сто лет от руки ничего не чертил, держите:

Как всегда, грязновато получилось =)

Я представлю в комплексной форме числа и , первое и третье числа будут для самостоятельного решения.

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

План урока.

1. Организационный момент.

2. Изложение материала.

3. Домашнее задание.

4. Подведение итогов урока.

Ход урока

I. Организационный момент .

II. Изложение материала .

Мотивация.

Расширение множества вещественных чисел состоит в том, что к действительным числам присоединяются новые числа (мнимые). Введение этих чисел связано с невозможностью во множестве действительных чисел извлечения корня из отрицательного числа.

Введение понятия комплексного числа.

Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi , где i – мнимая единица, причем i 2 = - 1 .

Исходя из этого, получим следующее определение комплексного числа.

Определение . Комплексным числом называется выражение вида a + bi , где a и b - действительные числа. При этом выполняются условия:

а) Два комплексных числа a 1 + b 1 i и a 2 + b 2 i равны тогда и только тогда, когда a 1 =a 2 , b 1 =b 2 .

б) Сложение комплексных чисел определяется правилом:

(a 1 + b 1 i) + (a 2 + b 2 i) = (a 1 + a 2) + (b 1 + b 2) i .

в) Умножение комплексных чисел определяется правилом:

(a 1 + b 1 i) (a 2 + b 2 i) = (a 1 a 2 - b 1 b 2) + (a 1 b 2 - a 2 b 1) i .

Алгебраическая форма комплексного числа.

Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.

Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0

Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a : a + 0i = a .

Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi : 0 + bi = bi .

Два комплексных числа z = a + bi и = a – bi , отличающиеся лишь знаком мнимой части, называются сопряженными.

Действия над комплексными числами в алгебраической форме.

Над комплексными числами в алгебраической форме можно выполнять следующие действия.

1) Сложение.

Определение . Суммой комплексных чисел z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i называется комплексное число z , действительная часть которого равна сумме действительных частей z 1 и z 2 , а мнимая часть - сумме мнимых частей чисел z 1 и z 2 , то есть z = (a 1 + a 2) + (b 1 + b 2)i .

Числа z 1 и z 2 называются слагаемыми.

Сложение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z 1 + z 2 = z 2 + z 1 .

2º. Ассоциативность: (z 1 + z 2) + z 3 = z 1 + (z 2 + z 3).

3º. Комплексное число –a –bi называется противоположным комплексному числу z = a + bi . Комплексное число, противоположное комплексному числу z , обозначается -z . Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0



Пример 1. Выполните сложение (3 – i) + (-1 + 2i) .

(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i .

2) Вычитание.

Определение. Вычесть из комплексного числа z 1 комплексное число z 2 z, что z + z 2 = z 1 .

Теорема . Разность комплексных чисел существует и притом единственна.

Пример 2. Выполните вычитание (4 – 2i) - (-3 + 2i) .

(4 – 2i) - (-3 + 2i) = (4 - (-3)) + (-2 - 2) i = 7 – 4i .

3) Умножение.

Определение . Произведением комплексных чисел z 1 =a 1 +b 1 i и z 2 =a 2 +b 2 i называется комплексное число z , определяемое равенством: z = (a 1 a 2 – b 1 b 2) + (a 1 b 2 + a 2 b 1)i .

Числа z 1 и z 2 называются сомножителями.

Умножение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z 1 z 2 = z 2 z 1 .

2º. Ассоциативность: (z 1 z 2)z 3 = z 1 (z 2 z 3)

3º. Дистрибутивность умножения относительно сложения:

(z 1 + z 2) z 3 = z 1 z 3 + z 2 z 3 .

4º. z · = (a + bi)(a – bi) = a 2 + b 2 - действительное число.

На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.

В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.

Пример 3. Выполните умножение (2 + 3i) (5 – 7i) .

1 способ. (2 + 3i) (5 – 7i) = (2× 5 – 3× (- 7)) + (2× (- 7) + 3× 5)i = = (10 + 21) + (- 14 + 15)i = 31 + i .

2 способ. (2 + 3i) (5 – 7i) = 2× 5 + 2× (- 7i) + 3i× 5 + 3i× (- 7i) = = 10 – 14i + 15i + 21 = 31 + i .

4) Деление.

Определение . Разделить комплексное число z 1 на комплексное число z 2 , значит найти такое комплексное число z , что z · z 2 = z 1 .

Теорема. Частное комплексных чисел существует и единственно, если z 2 ≠ 0 + 0i .

На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.

Пусть z 1 = a 1 + b 1 i , z 2 = a 2 + b 2 i , тогда


.

В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.

Пример 4. Найти частное .

5) Возведение в целую положительную степень.

а) Степени мнимой единицы.

Пользуясь равенством i 2 = -1 , легко определить любую целую положительную степень мнимой единицы. Имеем:

i 3 = i 2 i = -i,

i 4 = i 2 i 2 = 1,

i 5 = i 4 i = i,

i 6 = i 4 i 2 = -1,

i 7 = i 5 i 2 = -i,

i 8 = i 6 i 2 = 1 и т. д.

Это показывает, что значения степени i n , где n – целое положительное число, периодически повторяется при увеличении показателя на 4 .

Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.

Пример 5. Вычислите: (i 36 + i 17) · i 23 .

i 36 = (i 4) 9 = 1 9 = 1,

i 17 = i 4 × 4+1 = (i 4) 4 × i = 1 · i = i.

i 23 = i 4 × 5+3 = (i 4) 5 × i 3 = 1 · i 3 = - i.

(i 36 + i 17) · i 23 = (1 + i) (- i) = - i + 1= 1 – i.

б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.

Пример 6. Вычислите: (4 + 2i) 3

(4 + 2i) 3 = 4 3 + 3× 4 2 × 2i + 3× 4× (2i) 2 + (2i) 3 = 64 + 96i – 48 – 8i = 16 + 88i.

Комплексные числа - расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и - вещественные числа, - мнимая единица.

Запись комплексного числа в виде , , называется алгебраической формой комплексного числа.

Свойства комплексных чисел. Геометрическая интерпретация комплексного числа.

Действия над комплексными числами, заданными в алгебраической форме:

Рассмотрим правила, по которым производятся арифметические действия над комплекс­ными числами.

Если даны два комплексных числа α = a + bi и β = c + di, то

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

α – β = (a + bi) – (c + di) = (a – c) + (b – d)i . (11)

Это следует из определения действий сложения и вычитания двух упорядоченных пар действительных чисел (см. формулы (1) и (3)). Мы получили правила сложения и вычитания комплексных чисел: чтобы сложить два комплексных числа, надо отдельно сложить их действительные части и соответственно мни­мые части; чтобы из одного комплексного числа вычесть другое, необходимо вычесть соответственно их действительные и мнимые части.

Число – α = – a – bi называют противополож­ным числу α = a + bi . Сумма двух этих чисел равна нулю: - α + α = (- a - bi) + (a + bi) = (-a + a) + (-b + b)i = 0.

Для получения правила умножения комплексных чисел воспользуемся формулой (6), т. е. тем, что i2 = -1. Учитывая это соотношение, находим (a + bi)(c + di) = ac + adi + bci + bdi2 = ac + (ad + bc)i – bd, т.е.

(a + bi)(c + di) = (ac - bd) + (ad + bc)i . (12)

Эта формула соответствует формуле (2), которой определялось умножение упорядоченных пар дей­ствительных чисел.

Отметим, что сумма и произведение двух комп­лексно сопряженных чисел являются действительными числами. Всамомделе, еслиα = a + bi, = a – bi, тоα = (a + bi)(a - bi) = a2 – i2b2 = a2 + b2 , α + = (a + bi) + (a - bi) = (a + a) + (b - b)i= 2a, т.е.

α + = 2a, α = a2 + b2. (13)

При делении двух комплексных чисел в алгеб­раической форме следует ожидать, что частное вы­ражается также числом того же вида, т. е. α/β = u + vi, где u, v R. Выведем правило деления комплексных чисел. Пусть даны числа α = a + bi, β = c + di, причем β ≠ 0, т. е. c2 + d2 ≠ 0. Послед­нее неравенство означает, что c и d одновременно в нуль не обращаются (исключается случай, когда с = 0, d = 0). Применяя формулу (12) и вто­рое из равенств (13), находим:

Следовательно, частное двух комплексных чисел определяется формулой:

соответствующей формуле (4).

С помощью полученной формулы для числа β = с + di можно найти обратное ему число β-1 = 1/β. Полагая в формуле (14) а = 1, b = 0, получаем



Эта формула определяет число, обратное данному комплексному числу, отличному от нуля; это число также является комплексным.

Например: (3 + 7i) + (4 + 2i) = 7 + 9i;

(6 + 5i) – (3 + 8i) = 3 – 3i;

(5 – 4i)(8 – 9i) = 4 – 77i;

Действия над комплексными числами в алгебраической форме.

55. Аргумент комплексного числа. Тригонометрическая форма записи комплексного числа (вывод).

Арг.ком.числа. – между положительным направлением действительной оси Х вектором изображающим данное число.

Формула тригон. Числа: ,

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?