Подпишись и читай
самые интересные
статьи первым!

А.П.Осипов основы физиологии человека Краткий курс лекций. Нормальная физиология: конспект лекций

Текущая страница: 1 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Л. П. Черапкина, И. Г. Таламова
Избранные лекции по физиологии человека (нервная и сенсорные системы). Учебное пособие

УЧЕБНЫЙ ЭЛЕМЕНТ I.
Введение в физиологию. Центральная нервная система

Лекция 1. ХАРАКТЕРИСТИКА ФИЗИОЛОГИИ. НЕЙРОН КАК СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА НЕРВНОЙ СИСТЕМЫ
1.1. Характеристика физиологии как науки

Физиология (от греческих слов: физис – природа, логос – учение, наука) – наука о функциях и процессах, протекающих в организме или его составляющих системах, органах, тканях, клетках и механизмах их регуляции, обеспечивающих жизнедеятельность человека и животных в их взаимодействии с окружающей средой.

Функция – это специфическая деятельность системы или органа, процесс – последовательная смена явлений или состояний в развитии какого-либо действия или совокупность последовательных действий, направленных на достижение определенного результата.

Физиология изучает жизнедеятельность организма в норме. Норма – это пределы оптимального функционирования живой системы. Способность организма поддерживать относительное постоянство внутренней среды и устойчивость основных физиологических функций в пределах, обеспечивающих его нормальную жизнедеятельность, называется гомеостазом.

Адаптация представляет собой совокупность физиологических реакций, лежащих в основе приспособления организма к изменению окружающих условий и направленных к сохранению гомеостаза.

Онтогенез (индивидуальное развитие) – это период с момента возникновения организма в виде зиготы до его естественной смерти. Под механизмом регуляции функций следует понимать совокупность физиологических систем, обеспечивающих процессы жизнедеятельности, то есть способ регулирования процесса или функции.

В физиологии рассматривают два основных механизма: гуморальный и нервный. Гуморальная регуляция жизнедеятельности органов и систем осуществляется растворенными в жидких средах организма (кровь, лимфа и тканевая жидкость):

1) биологически активными веществами, к которым относятся общие продукты обмена веществ – углекислый газ, молочная кислота и другие неспецифические вещества;

2) «тканевыми» гормонами (продукты обмена, выделяемые отдельными органами и тканями и влияющие на определенные ткани); они наиболее характерны для желудочно-кишечного тракта (гастрин, секретин);

3) собственно гормонами (секреты желез внутренней секреции, выделяющиеся в кровь и имеющие высокую специфичность). Нервная регуляция – это управление процессами жизнедеятельности посредством нервной системы с обеспечением быстрого реагирования на стимулы, действующие на организм. Можно говорить о двух вариантах нервной регуляции: соматической – регуляции деятельности скелетных мышц, суставов, кожи; вегетативной – регуляции деятельности внутренних органов.

Оба механизма регуляции (нервный и гуморальный) взаимосвязаны, так как гуморальный механизм подчинен нервной регуляции (нейросекреторная функция гипоталамуса), а функциональное состояние нейронов, в свою очередь, зависит от гуморальной регуляции.

Физиология является частью биологии, поэтому она опирается на общую биологию, эмбриологию, связана с морфологическими науками (анатомия, цитология, гистология), учитывает данные биохимии, биофизики (в том числе электрофизиологии), биомеханики, соприкасается с психологией и кибернетикой и, наконец, тесно связана с медициной. Физиологию подразделяют на несколько в значительной степени самостоятельных, но тесно связанных между собой областей.

Обычно выделяют общую и частную физиологию, сравнительную и эволюционную , а также специальную (или прикладную) и физиологию человека.

В физиологии применяются различные экспериментальные методы исследования, дополняемые наблюдениями. С усовершенствованием методов исследования острые опыты (при которых наркоз, боль и другие факторы извращают нормальное течение функций организма) уступили место хроническим экспериментам и неинвазивным методам.

Основные этапы в развитии физиологии

Историю развития физиологии условно можно разделить на три этапа.

1. Первоначальные представления о функциях живого организма сложились в древнем мире (Гиппократ, Аристотель, Гален) в рамках медицины, когда основным методом исследования было наблюдение.

2. Самостоятельной научной дисциплиной физиология становится только в XVII веке, когда наряду с наблюдениями началась разработка экспериментальных методов исследования. Благодаря этому подходу физиологами в острых опытах получены многочисленные сведения о функциях организма: Уильям Гарвей открыл круги кровообращения, М. Мальпиги – капилляры, Рене Декарт сформулировал принципы рефлекторной теории, Л. Гальвани открыл «животное электричество» – способность живых тканей создавать электрические потенциалы. Ученые многих стран внесли свой вклад в развитие физиологии (Р. Барани, Р. Магнус, Ч. Шеррингтон, А. Хилл, В. Гесс, Г. Селье). Велик вклад и отечественных ученых (И. М. Сеченов, A. M. Шумлянский, Н. А. Миславский, Н. Е. Введенский, А. А. Ухтомский, Л. А. Орбели, Н. А. Бернштейн и другие).

3. Начало третьему (современному) периоду развития физиологии положили исследования И.П. Павлова в области пищеварения, которые были отмечены присуждением ему в 1904 году Нобелевской премии. В его работах впервые стал использоваться хронический эксперимент.

1.2. Физиология возбудимых тканей

Все живые клетки и ткани способны реагировать на различного рода воздействия и изменять под их влиянием свою текущую функциональную активность. К основным понятиям физиологии возбуждения относятся: раздражители и раздражение, возбудимость и возбуждение, торможение и функциональная подвижность, или лабильность.

В таблице 1 представлены данные о свойствах возбудимых тканей.


Таблица 1

Свойства возбудимых тканей и показатели, их характеризующие




1.3. Электрические явления в возбудимых тканях

Биопотенциалы – общее название всех видов электрических процессов в живых системах. Для исследования электрических явлений в нервных (и других) клетках широко применяют микроэлектроды (стеклянные пипетки с очень тонким, примерно 0,5 мкм, кончиком), заполненные электролитом. В таком микроэлектроде электролит играет роль проводника тока, а стекло – изолятора. Если кончик микроэлектрода вводят внутрь клетки, то он регистрирует внутриклеточный потенциал (относительно наружного «индифферентного» электрода).

Все электрические процессы разворачиваются на цитоплазматической мембране, являющейся хорошим электрическим изолятором. Некоторые белки, входящие в состав мембраны, целиком пронизывают ее. Именно пронизывающие мембрану (трансмембранные) белки образуют структуры, обеспечивающие движение ионов через мембрану (ионные переносчики и ионные каналы).

По обе стороны мембраны, между содержимым клетки и внеклеточной жидкостью, обычно существует электрическая разность потенциалов – мембранный потенциал (МП) . Мембранный потенциал, или потенциал покоя , оказывает влияние на процессы трансмембранного обмена веществ. В среднем у клеток возбудимых тканей МП достигает 50–80 мВ (МП у новорожденных равен 50 мВ, у взрослых – 60–80 мВ), со знаком «-» внутри клетки. Обусловлен он преимущественно ионами калия. Ионов калия намного больше в клетке, чем в среде, поэтому по градиенту концентраций калий может выходить из клетки, и это происходит с участием калиевых каналов, часть которых открыта в условиях покоя. В результате из-за того, что мембрана непроницаема для анионов клетки (глутамат, аспартат, органические фосфаты), на внутренней поверхности клетки образуется избыток отрицательно заряженных частиц, а на наружной – избыток положительно заряженных частиц. Возникает разность потенциалов. Величина МП также определяется ионами хлора и натрия, которые в небольших количествах могут проходить через полупроницаемую мембрану внутрь клетки.

Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионной асимметрии. Для этого, в частности, служит калий-натриевый насос (и хлорный), который восстанавливает ионную асимметрию, особенно после акта возбуждения. Калий-натриевый насос работает, используя энергию АТФ. Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия в нем выделяют следующие фазы:

1) локальный ответ – начальный этап деполяризации;

2) фаза деполяризации – быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут);

3) фаза реполяризации – восстановление исходного уровня мембранного потенциала.

При исследовании ПД нервной клетки и ПД скелетной мышцы было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциалов (деполяризация) (рис. 1).

На пике ПД мембранный потенциал быстро уменьшается, и на короткий период происходит перезарядка мембраны – явление реверсии, или овершута (внутренняя поверхность мембраны заряжена положительно по отношению к наружной). Однако бесконечно этот процесс идти не может: в результате закрытия инактивационных ворот натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов открываются и «+» заряды уходят за пределы клетки. Вначале этот процесс идет очень быстро, потом медленно. Поэтому фаза реполяризации вначале протекает быстро, а потом медленно (следовая негативность). На фоне следовых потенциалов происходит активация калий-натриевого насоса, обеспечивающего выведение трех ионов натрия и поступление двух ионов калия в клетку при расщеплении одной молекулы АТФ.


Рис. 1. Сопоставление развития потенциала действия (А) с изменениями проницаемости мембраны (Б) (по К. Кулланде, 1968): I – нарушение деятельности Na+/K+-помпы, изменение проницаемости мембраны, вхождение ионов Na внутрь клетки и изменение заряда мембраны (деполяризация); II – выход ионов K наружу (реполяризация); III – возобновление деятельности Na+/K+-помпы


Развитие ПД происходит по закону «все или ничего». При этом отмечаются фазовые изменения возбудимости клетки:

1. Фаза незначительного повышения возбудимости по сравнению с исходной. По времени эта фаза совпадает с начальной деполяризацией (локальный ответ).

2. Фаза абсолютной рефрактерности характеризуется полной невозбудимостью. По времени эта фаза совпадает с пиком ПД (полная деполяризация и инверсия заряда). Пессимальная частота раздражений на клеточном уровне ведет к ослаблению ответной реакции из-за попадания раздражения в фазу рефрактерности.

3. Фаза относительной рефрактерности характеризуется ответной реакцией на действие сверхпороговых раздражителей. По времени эта фаза совпадает с фазой восстановления потенциала покоя (реверсия и реполяризация).

4. Фаза экзальтации (повышенной возбудимости). Эта фаза по времени совпадает с периодом окончания отрицательного и началом развития положительного следового потенциала действия. Раздражение (даже если оно подпороговое), поступившее в эту фазу, вызывает ответную реакцию с большей легкостью. Оптимальная частота раздражений вызывает максимальную ответную реакцию, так как каждое следующее раздражение попадает в фазу экзальтации.

5. Фаза субнормальной возбудимости характеризуется повторным снижением возбудимости ниже исходного уровня. По времени эта фаза совпадает с развитием гиперполяризации мембраны.

1.4. Нейрон, его строение и функции

Нервная ткань состоит из двух типов клеток – нейронов (собственно нервных клеток, нейроцитов) и нейроглиальных клеток (нейроглиоцитов), образующих вспомогательную нервную ткань (нейроглию).

Нейрон – это функциональный элемент большой и сложно организованной системы, которая основана на взаимодействии между нейронами. Считается, что мозг человека содержит более 100 млрд нейронов. Каждый нейрон образует связи в среднем с тысячей других нейронов. Для того чтобы реализовать необходимость в функциональных контактах, в ходе эволюции возникли специализированные структурные образования – синапсы. Их основное назначение – обеспечить нервные клетки достаточно быстрым и надежным механизмом обмена сигналами.

Нейрон является главной структурно-функциональной единицей нервной ткани. Его функции связаны с восприятием, обработкой, передачей и хранением информации. Реализация этих функций обеспечивается способностью нейрона генерировать (производить) короткие электрические импульсы (потенциалы действия) и проводить их по своей мембране. Для передачи информации к другой клетке нейрон синтезирует и выбрасывает в окружающую среду особые биологически активные вещества – нейромедиаторы. В нервной клетке выделяют три основных отдела (рис. 2): тело, или сому, включающее ядро и окружающий его перикарион, и два типа отростков – дендриты и аксон.


Рис. 2. Нейрон и его компоненты (по А.В. Коробкову, С. А. Чесноковой, 1986)


Тела нейронов имеют размер от 4 до 120 мкм и очень разнообразны по форме. Отростки нейрона отличаются по внешнему виду, строению и функциям. Отросток, по которому нервные импульсы идут по направлению к телу нейрона, называется дендритом. Именно дендриты являются основным входом для сигналов от других нейронов и сенсорных стимулов. Количество дендритов варьирует в разных нервных клетках. Отросток, по которому нервный импульс распространяется от тела нейрона, всегда один и называется аксоном. Он начинается аксонным холмиком (в этом месте особенно часто происходит генерация нервного импульса). Многие аксоны покрыты особой миелиновой оболочкой, ускоряющей проведение нервного импульса. Как известно, в норме концентрация кислорода и глюкозы в крови остается на относительно постоянном уровне. Центральная нервная система очень чувствительна к колебаниям концентрации этих веществ. Особенно чувствительны нервные клетки к недостатку кислорода.

Число нейронов в ЦНС достигает максимума к 20–24-й неделе внутриутробного развития и остается постоянным до пожилого возраста. А вот, размеры нейронов, количество отростков и функционирующих синапсов после рождения увеличиваются. С возрастом повышается частота ритмической активности нейрона. Нейроны детей более чувствительны к гипоксии, к действию различных ядов и токсических веществ. У детей первого года жизни нервные клетки обладают низкой возбудимостью и лабильностью, поэтому у них легко развивается запредельное торможение, эти дети быстро переходят из бодрствующего состояния в сон.

Классификация нейронов

Нейроны очень разнообразны по форме, величине, количеству и способу отхождения от тела отростков, химическому строению. Приведем основные классификации нервных клеток.

1. Функционально нейроны подразделяются на чувствительные (афферентные, сенсорные), вставочные (промежуточные, переключающие, интернейроны) и исполнительные (эфферентные, двигательные или мотонейроны). Сенсорные нейроны – это нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Вставочные нейроны обеспечивают связь между чувствительными и исполнительными нейронами в рефлекторных дугах. Общее направление эволюции нервной системы связано с увеличением числа интернейронов. Из более чем ста миллиардов нейронов человека более 70 % составляют вставочные нейроны. Исполнительные нейроны, управляющие сокращениями поперечно-полосатых мышечных волокон, называют двигательными (мотонейронами). Они образуют нервно-мышечные синапсы. Исполнительные нейроны, называемые вегетативными, управляют работой внутренних органов, включая гладкомышечные волокна, железистые клетки и др.

2. По количеству отростков нейроны делятся на униполярные, псевдоуниполярные, биполярные и мультиполярные. Большинство нейронов нервной системы (и почти все нейроны в ЦНС) – это мультиполярные нейроны , они имеют один аксон и несколько дендритов. Биполярные нейроны имеют один аксон и один дендрит и характерны для периферических отделов анализаторных систем. Униполярных нейронов, имеющих только один отросток, у человека практически нет. Из тела псевдоуниполярного нейрона выходит один отросток, который практически сразу делится на две ветви. Одна из них выполняет функцию дендрита, а другая – аксона. Такие нейроны находятся в чувствительных спинномозговых и черепных ганглиях. Их дендрит морфологически (по строению) похож на аксон: он гораздо длиннее аксона и часто имеет миелиновую оболочку.

3. По форме тела и характеру ветвления отростков выделяют звездчатые, пирамидные, веретеновидные, корзинчатые, зернистые и другие нейроны.

1.5. Глиальные (вспомагательные) клетки, их функции

Помимо нейронов к нервной ткани относятся клетки нейроглии – нейроглиоциты . Они были открыты в XIX в. немецким цитологом Р. Вирховым, который определил их как клетки, соединяющие нейроны (греч. glia – клей), заполняющие пространства между ними. В дальнейшем было выявлено, что нейроглиоциты очень обширная группа клеточных элементов, отличающихся строением, происхождением и выполняемыми функциями. Стало понятно, что нейроглия функционирует в мозге не только как трофическая (питающая) или опорная ткань. Глиальные клетки принимают также участие и в специфических нервных процессах, активно влияя на деятельность нейронов.

Глиальные клетки сохраняют способность к делению в течение всей жизни организма. Благодаря этой особенности они (когда такое деление приобретает патологический характер) могут являться основой образования опухолей – глиом – в нервной системе. Увеличение массы мозга после рождения также идет, в первую очередь, за счет деления и развития клеток нейроглии.

Выделяют несколько типов глиальных клеток. Основные из них – астроциты, олигодендроциты, эпендимоциты и микроглия.

Астроглия (многоотросчатые клетки) служит опорой нейронов, изолирует нервное волокно, участвует в метаболизме нейронов. Олигодендроглия (клетка имеет один отросток) обеспечивает миелинизацию аксонов и метаболизм нейронов. Микроглия способна к фагоцитозу. Эпендимоциты выстилают спинномозговой канал и все желудочки мозга.

Незрелость глиальных клеток обусловливает дефицит защитной и опорной функций для тканей мозга, замедленные обменные процессы в мозге и его низкую электрическую активность, медленное и неэкономичное распространение возбуждения по нервным волокнам, а также повышенную проницаемость гематоэнцефалического барьера.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Предмет физиологии, ее связь с другими науками.

2. Дайте определение понятиям: «функция» и «процесс».

3. Какие механизмы регуляции существуют в организме человека?

4. Что такое гуморальные раздражители? Назовите их виды.

5. Объясните сущность нервного механизма регуляции.

6. Каково взаимодействие нервной и гуморальной регуляции в осуществлении функций организма человека?

7. Какие методы исследования используются при изучении процессов жизнедеятельности?

8. Охарактеризуйте основные этапы развития физиологии. Каков вклад отечественных и зарубежных ученых в развитие физиологии человека?

9. Что такое раздражимость? Назовите виды раздражителей.

10. Что такое возбудимость? Опишите показатели измерения возбудимости (порог возбудимости, хронаксия, лабильность).

11. Что такое проводимость и сократимость?

12. Что такое торможение? Опишите виды торможения на различных уровнях организации организма.

13. Что такое биопотенциалы? Каков механизм происхождения электрической энергии в живых тканях?

14. Мембранный потенциал покоя, механизмы его возникновения.

15. Мембранный потенциал действия, механизмы его возникновения.

16. Какова роль ионных насосов в возникновении мембранного потенциала?

17. Охарактеризуете изменения возбудимости при прохождении волны возбуждения.

18. Каково соотношение фаз изменения возбудимости с фазами развития потенциала действия?

19. Что такое нейрон? Структура, функции и разновидности нейронов.

20. Что такое нейроглия и какую роль она выполняет в ЦНС?

Лекция 2. ОБЩАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
2.1. Значение, общие свойства и функции ЦНС

Нервная система – это сложно организованная высокоспециализированная система быстрой передачи информации и управления, основной структурной единицей которой является нейрон. Нервная система человека делится на центральную нервную систему (ЦНС) и периферическую. ЦНС включает головной и спинной мозг. Аксоны большого числа нейронов, выходя из головного или спинного мозга, идут вместе и образуют нервы. По одним нервам – центростремительным, или афферентным, – возбуждение идет от рецепторов в ЦНС. По другим нервам – центробежным, или эфферентным, – импульсы поступают от ЦНС к рабочим органам. Нервы, расположенные на периферии, нервные узлы (ганглии) составляют периферическую нервную систему.

ЦНС связывает функционально в единое целое все клетки, ткани и органы человеческого организма. Она воспринимает многообразные изменения, возникающие во внешней среде или внутри организма, с помощью большого числа рецепторов. ЦНС играет ведущую роль в регуляции и координации всех сторон жизнедеятельности, обеспечивая взаимодействие организма со средой. Это взаимодействие осуществляется благодаря формированию как простейших рефлекторных реакций, так и сложных поведенческих актов, включая психическую деятельность человека.

В процессе онтогенеза происходит функциональное созревание ЦНС. Особенно быстро она развивается в первые 4–5 лет жизни ребенка. Пирамидная система, обеспечивающая произвольные движения, созревает позже, чем экстрапирамидная система, контролирующая непроизвольные движения. После рождения быстрее созревает спинной мозг, затем вышележащие отделы ствола мозга и в последнюю очередь кора больших полушарий. Развитие ЦНС во внутриутробном периоде регулируется главным образом генетическими и гормональными (йодсодержащие гормоны щитовидной железы, стероидные гормоны) факторами. В постнатальном периоде (после рождения) ведущую роль в развитии играют потоки афферентной импульсации с различных рецепторов, которые создаются в процессе воспитания и обучения ребенка.

Для ЦНС характерен ряд свойств и функций:

1) нейронное строение и наличие химической или электрической связи между нейронами;

2) нейроны, реализующие специфическую функцию, образуют локальные сети, в которых число входов для ввода информации преобладает над числом выходов для вывода информации. Кроме этого между структурами ЦНС имеется множественность прямых и обратных связей;

3) ЦНС способна к саморегуляции и параллельной обработке разной информации;

4) функционирование структур ЦНС осуществляется на основе рефлекторного доминантного принципа.

Кузина С. И., Фирсова С. С.

В этой книге предельно сжато изложен курс лекций по нормальной физиологии. Благодаря четким определениям основных понятий студент может сформулировать ответ, за короткий срок усвоить и переработать важную часть информации, успешно сдать экзамен. Курс лекций будет полезен не только студентам, но и преподавателям.

ЛЕКЦИЯ № 1. Введение в нормальную физиологию

Нормальная физиология – биологическая дисциплина, изучающая:

1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);

2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);

3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);

4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).

Физиология является экспериментальной наукой. В ней выделяют два метода исследования – опыт и наблюдение. Наблюдение – изучение поведения животного в определенных условиях, как правило, в течение длительного промежутка времени. Это дает возможность описать любую функцию организма, но затрудняет объяснение механизмов ее возникновения. Опыт бывает острым и хроническим. Острый опыт проводится только на короткий момент, и животное находится в состоянии наркоза. Из-за больших кровопотерь практически отсутствует объективность. Хронический эксперимент был впервые введен И. П. Павловым, который предложил оперировать животных (например, наложение фистулы на желудок собаки).

Большой раздел науки отведен изучению функциональных и физиологических систем. Физиологическая система – это постоянная совокупность различных органов, объединенных какой-либо общей функции. Образование таких комплексов в организме зависит от трех факторов:

1) обмена веществ;

2) обмена энергии;

3) обмена информации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи.

Благодаря присутствию в организме таких систем он может работать как единое целое.

Особое место в нормальной физиологии уделяется гомеостазу. Гомеостаз – совокупность биологических реакций, обеспечивающих постоянство внутренней среды организма. Он представляет собой жидкую среду, которую составляют кровь, лимфа, цереброспинальная жидкость, тканевая жидкость. Их средние показатели поддерживают физиологическую норму (например, pH крови, величину артериального давления, количество гемоглобина и т. д.).

Итак, нормальная физиология – это наука, определяющая жизненно важные параметры организма, которые широко используются в медицинской практике.

ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей

1. Физиологическая характеристика возбудимых тканей

Основным свойством любой ткани является раздражимость , т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

Различают две группы раздражителей:

1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико-химические (осмотические – кристаллик хлорида натрия).

Классификация раздражителей по биологическому принципу:

1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

К общим физиологическим свойствам тканей относятся:

1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

2. Законы раздражения возбудимых тканей

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений . Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега-Вейса-Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

Закон градиента раздражения . Градиент – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

3. Понятие о состоянии покоя и активности возбудимых тканей

О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма, и наблюдается функциональное отправление ткани.

Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани, и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

2) импульсное, распространяющееся возбуждение. Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера (возникает скачкообразно);

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответ.

Выделяют два типа торможения:

1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения;

2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

4. Физико-химические механизмы возникновения потенциала покоя

Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;

2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

1) силы диффузии;

2) силы электростатического взаимодействия.

Значение электрохимического равновесия:

1) поддержание ионной асимметрии;

2) поддержание величины мембранного потенциала на постоянном уровне.

В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.

Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа натрий-калиевого насоса обеспечивает:

1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;

2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;

3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.

5. Физико-химические механизмы возникновения потенциала действия

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

1) локальный ответ;

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Локальный ответ.

Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.

Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

Высоковольтный пиковый потенциал (спайк).

Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

1) восходящей части – фазы деполяризации;

2) нисходящей части – фазы реполяризации.

Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон

1. Физиология нервов и нервных волокон. Типы нервных волокон

Физиологические свойства нервных волокон:

1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;

2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;

3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.

Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности – предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;

4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.

Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:

1) отростки нервных клеток – осевые цилиндры;

2) глиальные клетки;

3) соединительнотканную (базальную) пластинку.

Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.

Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5–7 мкм, скорость проведения импульса 1–2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12–20 мкм скорость проведения возбуждения составляет 70-120 м/с.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.

Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.

Не следует смешивать понятия «нервное волокно» и «нерв». Нерв – комплексное образование, состоящее из нервного волокна (миелинового или безмиелинового), рыхлой волокнистой соединительной ткани, образующей оболочку нерва.

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей.

Раздражимость - это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением: физиологических параметров клетки, ткани организма, например изменением метаболизма.

Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией - возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение - это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д.. Возбудимые ткани обладают проводимостью-это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы. Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань. Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением. Все раздражители делятся на следующие группы:

1. По природе

а) физические (электричество, свет, звук,механические воздействия и т.д.)

б) химические (кислоты, щелочи, гормоны и т.д.)

в) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека).

2. По месту воздействия

а) внешние (экзогенные)

б) внутренние (эндогенные)

3. По силе:

а) подпороговые (не вызывающие ответной реакции)

б) пороговые (раздражители минимальной, силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой)

4. По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процесс эволюции, например, свет для фоторецепторов глаза).

б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также

а) безусловно-рефлекторные раздражители

б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

1. Закон "все или ничего": При допороговых раздражениях клетки в ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3. Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы длительности. По этой кривой можно определить ряд параметров возбудимости.

а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение.

б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения.

Этот параметр предложил рассчитывать Л. Лапик для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия тем выше возбудимость и наоборот. В клинической практике реобазу и хронаксию определяют с помощью метода хронаксимстрии для исследования возбудимости нервных стволов.

4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя, возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией. Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем Выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая, лабильность у нервов, наименьшая у сердечной мышцы.

Действие постоянного тока на возбудимые ткани.

В первые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным.. электродом т е. катодом

Возбудимость повышается, а под положительным - анодом снижается. Это называется законом действия постоянного Тока. Изменение возбудимости ткани (например: нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном, Под положительным - анодом, он возрастает. Возникает физический катэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физипроцедуры: ионофорез и гальванизация.

Строение и функции цитоплазматической мембраны клеток.

Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Толщина мембраны 7.5"-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами. погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды. 15- 30% холестерина. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрана и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать

функции мембраны:

1. Обеспечивает целостность клетки, как структурной единицы ткани.

2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью,

3. Обеспечивает активный транспорт ионов и других веществ в клетку и из нее

4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических

Механизмы возбудимости клеток. Ионные каналы мембраны. Механизмы возникновения мембранного потенциала (М П) и потенциалов действия /П.Л)

(в основном, передаваемая в организме информация имеет вид электрических сигналов (например нервные импульсы). Впервые наличие животного электричества установил физиолог Л Гальвани в 1736 г.. С целью исследования атмосферного электричества он подвешивал нервно-мышечные препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение. мышц. Это свидетельствовало о действии какого-то электричества на нерв нервно-мышечного препарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако А. Вольта установил, что источником электричества является место контакта двух разнородных металлов - .меди и железа. В физиологии первым классическим опытом Гальвани считается прикосновение к нерву нервно-мышечного препарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт. Он набрасывал конец нерва, нннервируюшего нервно-мышеччый препарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервно-мышечного препарат лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил, а 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

Классификация и структура ионных каналов цитоплазматической мембраны. Механизмы возникновения

мембранного потенциала и потенциалов действия.

."Первый шаг в изучении причин возбудимости клеток сделал в своей работе "Теория мембранного равновесия" в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.г. потенциала покоя или МП, близка к калиевому равновесному потенциалу, Это потенциал, образующемуся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала для калия он будет равен:

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали нервное гигантское волокно (аксон) кальмара и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия. 50 мМ натрия, 100 мМ хлора очень мало кальция.

Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ, "натрия, 560 мМ хлора и 10-мМ кальция. Таким образом, внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем,что в клеточною мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора. Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

а) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. б)Малоселективные, неспецифические, не имеющие определенной ионной избирательности: Их в мембране. небольшое количество.

2. По характеру пропускаемых ионов:

а) калиевые и натриевые

в) кальциевые

г)хлорные

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивируюшиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависямые, т.е. те, которые открываются при определенном уровне потенциала мембраны.

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически

активных веществ (нейромедиаторов. гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1 .Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго

определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависямых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывания канала и прекращение проведения ионов по каналу на определенном уровне МП. (Рис). Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (н) ворот (рис):

    Закрытом, когда активационные закрыты, а инактивацинные открыты.

    Активированном, и те и другие ворота открыты.

    Инактивированном активационные ворота открыты, а инактивационные закрыты

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного

мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны

для калия и натрия в состоянии покоя составляет 1:0.04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис. Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ноны. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых - 90-100 мВ. гладких мышц - 40-60 мВ, железистых клеток - 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема, и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрио-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрио-калиевый насос -это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия т.к в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза. на5-10 мВ увеличивает мембранный потенциал. В мембране имеются следующие механизмы трансмембранного транспорта.

1.Активный транспорт осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калнезый насос, кальциевый насос, хлорный насос.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помешается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец (рис).

Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод - катод, а внутреннюю положительный анод. Это приведет к снижению величины заряда мембраны - ее деполяризации. При действии слабого допороговсго тока происходит пассивная деполяризация, т.е. возникает катэлектротон (.рис). Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъём - местный или локальный ответ. Он является следствием открывают небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация" потенциала действия. Он находится для нейронов примерно на уровне - 50 мВ. На кривой потенциала действия выделяют следующие фазы:

    Локальный ответ (местная деполяризация), предшествующий развитию ПД.

    Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2мсек.

    Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно -20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя Длительность фазы 3-5 мсек.

    Фаза следовой деполяризация или отрицательного следового потенциала. Период, когда возвращений МП к потенциалу покоя временно задерживается, он длится 15-30 мсек.

    Фаза следовой гиперполяризацин или положительного следового потенциала. В эту фазу. МП на некоторое время становится выше исходного уровне ПП. Ее длительность 250-300 мсек.

Амплитуда потенциала действия скелетных мышц в среднем 120-130 мВ. нейронов 80-90 мВ. гладкомышечных

клеток 40-50 мВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона - аксоном холмике.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период

локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная

самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота

"натриевых каналов открываются, и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую

деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость

мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня

деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (-20 мВ). сила

концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации

быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко

усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации

специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смешения

МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и

активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет

реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов

остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более

активно работает натрий-калиезый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на

возбуждение клеток. При полной блокаде натриевых каналов, например ядом рыбы тетродонта - тетродотоксином,

клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин,

лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных

импульсов по чувствительным нервам прекращается, наступает обезболивание анестезия органа. При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е высвобождаются ионы кальция из цитоплазмы т.е восстановление МП. поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также - используется в клинической практике. Например, один из них хинидин." удлиняя фазу. реполяризации

кардиомиоцитов, урежает сердечные сокращения и нормализует сердечный ритм. "Также следует отметить, что чем выше скорость распространения ПД по мембране клетки, ткани, тем выше ее проводимость.

Соотношение фаз потенциала действия и возбудимости

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением. В фазу деполяризации ПД, когда открываются все натриевые каналы и ноны натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной не возбудимости или абсолютной рефрактерности, т.е. фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной не возбудимости или относительной рефрактерности. Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно, в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она наводится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление.аккомодации также связано с изменением проводимости ионных каналов. Если деполяризуюший ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Физиология мышц.

В организме имеются 3 типа мышц: скелетные или поперечно-полосатые, гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела. Гладкие мышцы необходимы для перистальтики органов желудочно-кишечного тракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д.. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией способностью к самопроизвольным сокращениям.

Ультраструктура скелетного мышечного волокна.

Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно - это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму. В саркоплазме находится несколько ядер, митохондрий образования саркоплазматического ретикулума (СР) и сократительные элементы - миофибрилы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистернами. Благодаря этому, потенциал действия может распространяться от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибрнллы толстые, актиновые тонкие. На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропией светлые [-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибрилы между двумя 2-пластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозиновые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-лнния. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

Механизмы мышечного сокращения.

При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. При электронной, микроскопии было установлено, что длина нитей актина и миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно этой теории мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофирриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по, системе поперечных трубочек СР., на продольные трубочки и цистерны. Возникает деполяризация мембранных цистерн и из них в саркоплазму высвобождаются ионы Са. На нитях актина расположены молекулы еще двух белков - тропонина и тропомиознна. При низкой (менее 10 в 8 степени) концентрации кальция, т.г. в состоянии покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина. Когда ноны кальция начинают выходить. из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления и разъединения поперечных мостиков с нитями актина. При этом головки ритмически продвигаются; по нитям актина к 2-мембранам. Для полного сокращения мышцы необходимо 50" таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается, и мембранный потенциал возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФ-Фаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и та концентрация подает ниже 10""М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние. Энергетика мышечного сокращения Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры. расщепляющие АТФ до АДФ и неорганического фосфата.. Т.е. миозин является одновременно ферментом АТФ-азой ПД Активность миозина как АТФ-фазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР. которые способствуют освобождению активных центров актина от тропомиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ-Ф=АТФ). Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0.5 - 2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты;1 снижением содержания кислорода. При продолжительной работе, с усилением кровообращения ресинтез АТФ начинает осуществляться с помощью окислительного фосфолирирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей до ферментативного аутолиза этих белков). Возникает трупное окоченение, АТФ необходима для расслабления потом, что обеспечивает работу Са-насоса.

Биомеханика мышечных сокращений. Одиночное сокращение, суммация. тетанус.

При нанесении на двигательный нерв или мышцу одиночного порогового или сверх порогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около -2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит, высвобождения кальция,13 СР. взаимодействие актина с миозином и т.д.

2. Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 Мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис. В: режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефракторного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис).. Гладкий тетанус возникает тогда, когда", каждое последующее раздражение наносится а конце периода укорочения т.е. имеет место полная суммация отдельных сокращений и (рис.). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук;

при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и с-илы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной; Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы. вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону" силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной вобудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы сокращения. Сила и работа мышц.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы. Например, при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела.

другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от

строения мышцы, ее функционального состояния, исходной длины, пола. возраста, степени тренированности

человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например, портняжная".

веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь

ш;!1еречного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон.

образующих мышцу. Наибольшая площадь поперечного физиологического сечения а, следовательно, сила, у перистых

мыши. Наименьшая у мышце параллельным расположением волокон (рис.).

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При

умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении.

нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами.

кистевым, становым и т.д..

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной.

делённой на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет

и.2 кг см2. трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При

динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом

режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р*h)

Работа измеряется в кГ*М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних

нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится

максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.). Такое же влияние на величину

работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в

расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа, выполняемая в единицу

времени (Р = А * Т). Вт

Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

ЛЕКЦИЯ № 1. Введение в нормальную физиологию

Нормальная физиология – биологическая дисциплина, изучающая:

1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);

2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);

3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);

4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).

Физиология является экспериментальной наукой. В ней выделяют два метода исследования – опыт и наблюдение. Наблюдение – изучение поведения животного в определенных условиях, как правило, в течение длительного промежутка времени. Это дает возможность описать любую функцию организма, но затрудняет объяснение механизмов ее возникновения. Опыт бывает острым и хроническим. Острый опыт проводится только на короткий момент, и животное находится в состоянии наркоза. Из-за больших кровопотерь практически отсутствует объективность. Хронический эксперимент был впервые введен И. П. Павловым, который предложил оперировать животных (например, наложение фистулы на желудок собаки).

Большой раздел науки отведен изучению функциональных и физиологических систем. Физиологическая система – это постоянная совокупность различных органов, объединенных какой-либо общей функции. Образование таких комплексов в организме зависит от трех факторов:

1) обмена веществ;

2) обмена энергии;

3) обмена информации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи.

Благодаря присутствию в организме таких систем он может работать как единое целое.

Особое место в нормальной физиологии уделяется гомеостазу. Гомеостаз – совокупность биологических реакций, обеспечивающих постоянство внутренней среды организма. Он представляет собой жидкую среду, которую составляют кровь, лимфа, цереброспинальная жидкость, тканевая жидкость. Их средние показатели поддерживают физиологическую норму (например, pH крови, величину артериального давления, количество гемоглобина и т. д.).

Итак, нормальная физиология – это наука, определяющая жизненно важные параметры организма, которые широко используются в медицинской практике.

Из книги Основы нейрофизиологии автора Валерий Викторович Шульговский

Из книги Гомеопатическая клиническая фармакология автора Эрнст Фаррингтон

26-я ЛЕКЦИЯ Cucurbitaceae - Тыквенные Cucurbitaceae:1. Colocyinths cucumis.2. Bryonia alba3. Citrullus. Семена мочегонны.4. Cucurbita (скваш-s quash тыква).5. Momordica balsamum. Ветры.6. Flaterium momordica. Кишки и лихорадка.Сегодня мы начнем изучение Cucurbitaceae. Это семейство дает нам около шести или восьми лекарств, а также несколько

Из книги История медицины: конспект лекций автора Е. В. Бачило

28-я ЛЕКЦИЯ Coniferae и Euphorbiaceae Coniferae - Хвойные Pinus sylvestris. Детская атрофия. Abies nigra. Желудок. Sabina Juniperus. Выкидыш.Terebenthina.1. Почки, мочевой пузырь и пр.2. Слизистые оболочки.3. Матка.4. Тифозные состояния.5. Почечная водянка.Сравните - Arsenicum, Cantharis, Copaiva, Camphora, Phosphorus.Pix liquida. Легкие

Из книги Общая и клиническая иммунология: конспект лекций автора Н. В. Анохина

29-я ЛЕКЦИЯ Ranunculaceae - Лютиковые Aconitum.Helleborus niger.Paeonia.Pulsatilla.Hydrastis.Staphisagria.Actea racemosa.Actea spicata.Radix coptidis.Ranunculus

Из книги Оперативная хирургия: конспект лекций автора И. Б. Гетьман

33-я ЛЕКЦИЯ Rubiaceae - Мареновые Rubiaceae:1. Rubia titctoiria (Марена).2. Galium (Тоже красная краска).3. Cinchona.4. Ipecacuanha.5. Coffea.6. Mitchella.7. Gambier.Сегодня перед нами семейство растений, из которого мы получаем три очень ценных средства, Cinchona, Ipecacuanha и Coffea. Это семейство дает нам также Gambier (Gambogia,

Из книги Странности нашего тела – 2 автора Стивен Джуан

35-я ЛЕКЦИЯ Scrophulariaceae - Норичниковые China. Из этого семейства растений мы получаем Digitalis, Gratiola, Leptandra viginica, Euphrasia, Verbascum и Linaria. У нас имеется немного симптомов для каждого из этих средств, и те, которые известны, достаточно определенны, чтобы их легко запомнить. Важнейшим

Из книги автора

37-я ЛЕКЦИЯ Solanaceae - Пасленовые Solanaceae:1. Belladonna.2. Hyoscyamus.3. Stramonium.4. Solan um nigr.5. Tabacum.6. Dulcamara.7. Capsicum.Средства, образующие эту группу по своей симптоматологии очень сходны друг с другом. Едва ли найдется хоть один симптом у этих средств, который не встречался бы почти в том же виде

Из книги автора

42-я ЛЕКЦИЯ Минеральная группа В прилагаемой таблице я разместил для вашего изучения элементы по их взаимному соотношению до некоторой степени так же, как мы находим это в химии. Поэтому они не расположены в порядке, принятом в фармакологии. Но ведь это не абсолютный

Из книги автора

44-я ЛЕКЦИЯ Угольная группа 1. Carbo animalis (содержит фосфат извести).2. Carbo vegetabilis (содержит углекислое кали).3. Graphites (содержит железо).4. Anilin-sulphat.5. Carboneum (сажа).6. Угольный газ.7. Бисульфид угля (сероуглерод).Сегодня я займу ваше внимание лекарствами, получаемыми из угольной

Из книги автора

47-я ЛЕКЦИЯ Acida (Кислоты) Ac. fluoricum, Плавиковая кислотаAc. muriaticum, Соляная кислотаAc. nitricum, Азотная кислотаAc. sulphuricum, Серная кислотаAc. oxalicum, Щавелевая кислотаAc. citricum, Лимонная кислотаAc. phosphoricum, Фосфорная кислотаAc. hudrocuanicum, Синеродисто-водородная кислотаAc. picricum, Пикриновая кислотаAc.

Из книги автора

53-я ЛЕКЦИЯ Препараты Сурьмы (Antimonium) Сегодня мы займемся изучением двух препаратов сурьмы, Antimonium crudum и Antimonium tartaricum. Под названием Antimonium crudum не следует подразумевать металлической сурьмы, но это ее руда, т. е. та форма, в которой Сурьма чаще всего встречается в природе. Antimonium

Из книги автора

55-я ЛЕКЦИЯ Тяжелые металлы В этой группе мы имеем Aurum metallicum, Aurum muriaticum, Argentum metallicum, Argentum nitricum, Platina и Palladium. Есть еще 2–3 средства, о которых мы знаем очень немного.Aurum и Argentum имеют несколько общих симптомов, и все-таки их характеристики настолько различны, что вы легко можете

Из книги автора

ЛЕКЦИЯ № 1. Вводная лекция. Медицинская символика различных времен и народов История медицины – это наука о развитии, совершенствовании медицинских знаний, медицинской деятельности разных народов мира на протяжении всей истории человечества, которая находится в

Из книги автора

ЛЕКЦИЯ № 1. Введение в иммунологию. Защитные силы организма и болезни В течение своей жизни каждый человек в быту, на работе, на отдыхе постоянно взаимодействует с многочисленными и весьма разнообразными природными объектами и явлениями, определяющими условия жизни, в

Из книги автора

ЛЕКЦИЯ № 1 Введение в оперативную хирургию. Учение об операции Оперативная хирургия (наука о хирургических операциях) изучает технику оперативных вмешательств. Топографическая (хирургическая) анатомия – наука о взаимоотношениях органов и тканей в различных областях

Светлана Сергеевна Фирсова,С. И. Кузина

Нормальная физиология: конспект лекций

Кузина С. И., Фирсова С. С.

В этой книге предельно сжато изложен курс лекций по нормальной физиологии. Благодаря четким определениям основных понятий студент может сформулировать ответ, за короткий срок усвоить и переработать важную часть информации, успешно сдать экзамен. Курс лекций будет полезен не только студентам, но и преподавателям.

ЛЕКЦИЯ № 1. Введение в нормальную физиологию

Нормальная физиология – биологическая дисциплина, изучающая:

1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);

2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);

3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);

4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).

Физиология является экспериментальной наукой. В ней выделяют два метода исследования – опыт и наблюдение. Наблюдение – изучение поведения животного в определенных условиях, как правило, в течение длительного промежутка времени. Это дает возможность описать любую функцию организма, но затрудняет объяснение механизмов ее возникновения. Опыт бывает острым и хроническим. Острый опыт проводится только на короткий момент, и животное находится в состоянии наркоза. Из-за больших кровопотерь практически отсутствует объективность. Хронический эксперимент был впервые введен И. П. Павловым, который предложил оперировать животных (например, наложение фистулы на желудок собаки).

Большой раздел науки отведен изучению функциональных и физиологических систем. Физиологическая система – это постоянная совокупность различных органов, объединенных какой-либо общей функции. Образование таких комплексов в организме зависит от трех факторов:

1) обмена веществ;

2) обмена энергии;

3) обмена информации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи.

Благодаря присутствию в организме таких систем он может работать как единое целое.

Особое место в нормальной физиологии уделяется гомеостазу. Гомеостаз – совокупность биологических реакций, обеспечивающих постоянство внутренней среды организма. Он представляет собой жидкую среду, которую составляют кровь, лимфа, цереброспинальная жидкость, тканевая жидкость. Их средние показатели поддерживают физиологическую норму (например, pH крови, величину артериального давления, количество гемоглобина и т. д.).

Итак, нормальная физиология – это наука, определяющая жизненно важные параметры организма, которые широко используются в медицинской практике.

ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей

1. Физиологическая характеристика возбудимых тканей

Основным свойством любой ткани является раздражимость , т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

Различают две группы раздражителей:

1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико- химические (осмотические – кристаллик хлорида натрия).

Классификация раздражителей по биологическому принципу:

1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

К общим физиологическим свойствам тканей относятся:

1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

2. Законы раздражения возбудимых тканей

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?