Подпишись и читай
самые интересные
статьи первым!

Корреляционные поля и их использование в предварительном анализе корреляционной связи. Корреляционный и регрессионный анализ данных

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Теоретическая часть

Для различия направленности влияния одного признака на другой введены понятия положительной и отрицательной связи.

Если с увеличением (уменьшением) одного признака в основном увеличиваются (уменьшаются) значения другого, то такая корреляционная связь называется прямой или положительной.

Если с увеличением (уменьшением) одного признака в основном уменьшаются (увеличиваются) значения другого, то такая корреляционная связь называется обратной или отрицательной.

Корреляционные поля и их использование в предварительном анализе корреляционной связи

При постановке вопроса о корреляционной зависимости между двумя статистическими признаками Х и У проводят эксперимент с параллельной регистрацией их значений.

Пример -
Будем называть корреляционным полем зону разброса таким образом полученных точек на графике. Визуально анализируя корреляционное поле на рисунке 8, можно заметить, что оно как бы вытянуто вдоль какой-либо прямой линии. Такая картина характерна для так называемой линейной корреляционной взаимосвязи между признаками. При этом можно в общем предположить, что с увеличением конечной скорости разбега увеличивается и длина прыжка, и наоборот. Т.е. между рассматриваемыми признаками наблюдается прямая (положительная) взаимосвязь.

Наряду с этим примером из множества других возможных корреляционных полей можно выделить следующие (рис.9-11):

На рисунке 9 тоже просматривается линейная взаимосвязь, но с увеличением значений одного признака, уменьшаются значения другого, и наоборот, т.е. связь обратная или отрицательная. Можно предположить, что на рисунке 11 точки корреляционного поля разбросаны около какой-то кривой линии. В таком случае говорят, что между признаками существует криволинейная корреляционная связь.

В отношении корреляционного поля, изображенного на рисунке 10, нельзя сказать, что точки располагаются вдоль какой-то прямой или кривой линии, оно имеет сферическую форму. В этом случае говорят, что признаки Х и Y не зависят друг от друга.



Кроме этого по корреляционному полю можно примерно судить о тесноте корреляционной связи, если эта связь существует. Здесь говорят: чем меньше точки разбросаны около воображаемой усредненной линии, тем теснее корреляционная связь между рассматриваемыми признаками.

Визуальный анализ корреляционных полей помогает разобраться в сущности корреляционной взаимосвязи, позволяет высказать предположение о наличии, направленности и тесноте связи. Но точно сказать, имеется связь между признаками или нет, линейная связь или криволинейная, тесная связь (достоверная) или слабая (недостоверная), с помощью этого метода нельзя. Наиболее точным методом выявления и оценки линейной взаимосвязи между признаками является метод определения различных корреляционных показателей по статистическим данным.

3. Коэффициенты корреляции и их свойства

Часто для определения достоверности взаимосвязи между двумя признаками(Х, У) используютнепараметрический (ранговый) коэффициент корреляции Спирмена и параметрический коэффициент корреляции Пирсона . Величина этих показателей корреляционной связи определяется по следующим формулам:

(1)

Где: dx - ранги статистических данных признака х;

dy - ранги статистических данных признака у.

(2)

Где: - статистические данные признака х,

Статистические данные признака у.

Эти коэффициенты обладают такими мощными признаками:

1. На основании коэффициентов корреляции можно судить только о прямолинейной корреляционной взаимосвязи между признаками. О криволинейной связи с их помощью ничего сказать нельзя.
2. Значения коэффициентов корреляции есть безразмерная величина, которая не может быть меньше -1 и больше +1, т.е.
3.
4. Если значения коэффициентов корреляции равны нулю, т.е. = 0 или = 0, то связь между признаками х, у отсутствует.
5. Если значения коэффициентов корреляции отрицательные, т.е. < 0 или < 0, то связь между признаками Х и Y обратная .
6. Если значения коэффициентов корреляции положительные, т.е. > 0 или y> 0 , то связь между признаками Х и Y прямая (положительная).
7. Если коэффициенты корреляции принимают значения +1 или -1, т.е. = ± 1 или = ± 1, то связь между признаками Х и Y линейная (функциональная) .
8. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Эта достоверность еще зависит от числа степеней свободы.

Практическая часть.

Определите коэффициент корреляции между температурой тела и частотой пульса и дайте оценку выявленной взаимосвязи.

Наглядным изображением корреляционной таблицы служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладываются значения X, по оси ординат – Y, а точками показываются сочетания X и Y. По расположению точек можно судить о наличии связи.

Использование графического метода.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции.

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Здесь ε - случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную модель значимых объясняющих переменных;

2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание структуры модели;

4. Неправильная функциональная спецификация;

21. Корреляционно-регрессионный анализ.

Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты и направления связи и установление аналити­ческого выражения (формы) связи (регрессионный анализ).

Целью регрессионного анализа является оценка функциональной зависимости условного среднего значения результативного признака (У) от факторных (х1, х2, …, хk).

Уравнение регрессии, или статистическая модель связи социально-эко­номических явлений, выражается функцией:

Yx = f(х1, х2, …, хn),

где “n” – число факторов, включенных в модель;

Хi – факторы, влияющие на результат У.

Этапы корреляционно-регрессионного анализа:

Предварительный (априорный) анализ. Он дает неплохие результаты если проводится достаточно квалифицированным исследователем.

Сбор информации и ее первичная обработка.

Построение модели (уравнения регрессии). Как правило эту процедуру выполняют на ПК используя стандартные программы.

Оценка тесноты связей признаков, оценка уравнения регрессии и анализ модели.

Прогнозирование развития анализируемой системы по уравнению регрессии.

На первом этапе формулируется задача исследования, определяется методика измерения показателей или сбора информации, определяется число факторов, исключаются дублирующие факторы или связанные в жестко-детерминированную систему.

На втором этапе анализируется объем единиц: совокупность должна быть достаточно большой по числу единиц и наблюдений (N>>50), число факторов “n” должно соответствовать количеству наблюдений “N”. Данные должны быть количественно и качественно однородны.

На третьем этапе определяется форма связи и тип аналитической функции (парабола, гипербола, прямая) и находятся ее параметры.

На четвертом этапе оценивается достоверность всех характеристик корреляционной связи и уравнения регрессии используя критерий достоверности Фишера или Стьюдента, производится экономико-технологический анализ параметров.

На пятом этапе осуществляется прогноз возможных значений результата по лучшим значениям факторных признаков, включенных в модель. Здесь выбираются наилучшие и наихудшие значения факторов и результата.

22. Виды уравнений регрессии.

Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.

Регрессия - величина, выражающая зависимость среднего значения случайной величины у от значений случайной величины х.

Уравнение регрессии выражает среднюю величину одного признака как функцию другого.

Функция регрессии - это модель вида у = л», где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор).

Линия регрессии - график функции у = f (x).

2 типа взаимосвязей между х и у:

1) может быть неизвестно, какая из двух переменных является независимой, а какая - зависимой, переменные равноправны, это взаимосвязь корреляционного типа;

2) если х и у неравноправны и одна из них рассматривается как объясняющая (независимая) переменная, а другая - как зависимая, то это взаимосвязь регрессионного типа.

Виды регрессий:

1) гиперболическая - регрессия равносторонней гиперболы: у = а + b / х + Е;

2) линейная - регрессия, применяемая в статистике в виде четкой экономической интерпретации ее параметров: у = а+b*х+Е;

3) логарифмически линейная - регрессия вида: In у = In а + b * In x + In E

4) множественная - регрессия между переменными у и х1 , х2 ...xm, т. е. модель вида: у = f(х1 , х2 ...xm)+E, где у - зависимая переменная (результативный признак), х1 , х2 ...xm - независимые, объясняющие переменные (признаки-факторы), Е- возмущение или стохастическая переменная, включающая влияние неучтенных факторов в модели;

5) нелинейная - регрессия, нелинейная относительно включенных в анализ объясняющих переменных, но линейная по оцениваемым параметрам; или регрессия, нелинейная по оцениваемым параметрам.

6) обратная - регрессия, приводимая к линейному виду, реализованная в стандартных пакетах прикладных программ вида: у = 1/a + b*х+Е;

    парная - регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак - фактор), Е - возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

    Ряды динамики и их виды

Динамический ряд всегда состоит из 2 элементов: 1) момент времени или временной период, по отношению к которому приводятся статистические данные, 2)статистического показателя, который называется уровнем динамического ряда.

В зависимости от содержания временного показателя, ряды динамики бывают моментные или интервальные

В зависимости от вида статистического показателя, динамические ряды подразделяются на ряды абсолютных, относительных и средних величин

Абсолютные показывают точные значения

Относительные показывают изменение удельных весов показателя в общей совокупности

Средние величины содержат об изменении во времени показателя, являющимся средним уровнем явления

    Показатели ряда динамики. Средний уровень ряда динамики.

Показатели: 1)средний уровень дин.ряда, 2)абс.приросты, цепные и базисные, ср.абс.прирост, 3)тымпы роста и прироста, цепные и базисные, ср.темп роста и прироста, 4)fmcjk.nystзначения 1% прироста

Средние показатели динамики

Обобщённые характеристики ряда динамики, с их помощью сравнивают интенсивность развития явления по отношению к разным объектам, например по странам, отраслям, предприятиям

Средний уровень в мом.времени уи. Методика расчета среднего уровня зависит от вида ряда(моментальный/интервальный)(с равными/разными интервалами). Если дан интервальныя ряд динамики абсолютных или средних вельчин с равными промежутками времени, то для расчета среднего уровня применяются формула для расчета средней простой. Если промежутки времени интервального ряда неравные, то средний уровень находят по средней арифметической взвешенной. Уср=сммУи*Ти/сммТи

25. Абсолютный прирост (дельта и) – это разность между двумя уровнями динамического ряда, которая пока­зывает, насколько данный уровень ряда превышает уровень, принятый за базу сравнения. Дельта и=Уи-У0

Дельта и=Уи-Уи-1

Абсолютное ускорение - разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период одинаковой дли­тельности: Дельта и с чертой=дельта и- дельта и-1. Абсолютное ускорение показывает, насколько увеличилась (уменьшилась) скорость изменения показателя. Показатель ускорения применяется для цепных абсолютных приростов. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.

    Показатели относительного изменения уровней ряда динамики.

Коэффициент роста (темп роста) - это отношение двух сравниваемых уровней, которое показывает, во сколько раз данный уровень превышает уровень базисного периода. Отражает интенсивность изменения уровней ряда динамики и показывает, во сколько раз увеличился уровень по сравнению с базисным, а в случае уменьшения - какую часть базисного уровня составляет сравниваемый уровень.

Формула расчета коэффициента роста: при сравнении с постоянной базой : K i .=y i /y 0 , при сравнении с переменной базой : K i .=y i /y i -1 .

Темп роста - это коэффициент роста, выраженный в процентах:

T р = К 100 %.

Темпы роста для любых рядов динамики являются интервальными показателями, т.е. характеризуют тот или иной промежуток (интервал) времени.

Темп прироста - относительная величина прироста, т. е. отношение абсолютного прироста к предыдущему или базисному уровню. Характеризует, на сколько процентов уровень данного периода больше (или меньше) базисного уровня.

Темп прироста - отношение абсолютного прироста к уровню, принятому за базу сравнения:

Тпр=Уи-У0/У0*100%

Темп прироста - разность между темпом роста (в процентах) и 100,

1. Тема работы.

2. Краткие теоретические сведения.

3. Порядок выполнения работы.

4. Исходные данные для разработки математической модели.

5. Результаты разработки математической модели.

6. Результаты исследования модели. Построение прогноза.

7. Выводы.

В задачах 2-4 можно использовать ППП Excel для расчетов характеристик модели.

Работа № 1.

Построение моделей парной регрессии. Проверка остатков на гетероскедастичность.

По 15 предприятиям, выпускающим один и тот же вид продукции известны значения двух признаков:

х - выпуск продукции, тыс. ед.;

у - затраты на производство, млн. руб.

x y
5,3 18,4
15,1 22,0
24,2 32,3
7,1 16,4
11,0 22,2
8,5 21,7
14,5 23,6
10,2 18,5
18,6 26,1
19,7 30,2
21,3 28,6
22,1 34,0
4,1 14,2
12,0 22,1
18,3 28,2

Требуется:

1. Построить поле корреляции и сформулировать гипотезу о форме связи .

2. Построить модели:

Линейной парной регрессии.

Полулогарифмической парной регрессии.

2.3 Степенной парной регрессии.
Для этого:


2. Оценить тесноту связи с помощью коэффициента (индекса)
корреляции.

3. Оценить качество модели с помощью коэффициента (индекса)
детерминации и средней ошибки аппроксимации
.

4. Дать с помощью среднего коэффициента эластичности
сравнительную оценку силы связи фактора с результатом
.

5. С помощью F -критерия Фишера оценить статистическую надежность результатов регрессионного моделирования .

По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии.

Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность.

Строим поле корреляции.

Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+bх , или нелинейной вида: у=а+blnх, у = ах b .

Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+bх, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a , такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции bх, такие как расход материала, электроэнергии и т.д.


2.1. Модель линейной парной регрессии .

2.1.1. Рассчитаем параметры a и b линейной регрессии у=а+bх .

Строим расчетную таблицу 1.

Таблица 1

Параметры a и b уравнения

Y x = a + bx


Разделив на n b :

Уравнение регрессии:

=11,591+0,871x

С увеличением выпуска продукции на 1 тыс. руб. затраты на производство увеличиваются на 0,871 млн. руб. в среднем, постоянные затраты равны 11,591 млн. руб.

2.1.2. Тесноту связи оценим с помощью линейного коэффициента парной корреляции.

Предварительно определим средние квадратические отклонения признаков.

Средние квадратические отклонения:

Коэффициент корреляции:

Между признаками X и Y наблюдается очень тесная линейная корреляционная связь.

2.1.3. Оценим качество построенной модели.

т. е. данная модель объясняет 90,5% общей дисперсии у , на долю необъясненной дисперсии приходится 9,5%.

Следовательно, качество модели высокое.

А i .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.

Ошибка аппроксимации А i , i =1…15:

Средняя ошибка аппроксимации:

2.1.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,515%.

2.1.5. Оценим статистическую значимость полученного уравнения.
Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05. Найдем табличное (критическое) значение F- критерия Фишера:

Найдем фактическое значение F - критерия Фишера:

следовательно, гипотеза H 0 H 1 x и y неслучайна.

Построим полученное уравнение.

2.2. Модель полулогарифмической парной регрессии .

2.2.1. Рассчитаем параметры а и b в регрессии:

у x =а +blnх .

Линеаризуем данное уравнение, обозначив:

y=a + bz .

Параметры a и b уравнения

= a + bz

определяются методом наименьших квадратов:


Рассчитываем таблицу 2.

Таблица 2

Разделив на n и решая методом Крамера, получаем формулу для определения b :

Уравнение регрессии:

= -1,136 + 9,902z

2.2.2. Оценим тесноту связи между признаками у и х .

Т. к. уравнение у = а + bln x линейно относительно параметров а и b и его линеаризация не была связана с преобразованием зависимой переменной _у , то теснота связи между переменными у и х , оцениваемая с помощью индекса парной корреляции R xy , также может быть определена с помощью линейного коэффициента парной корреляции r yz

среднее квадратическое отклонение z :

Значение индекса корреляции близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида = a + bz.

2.2.3. Оценим качество построенной модели.

Определим коэффициент детерминации:

т. е. данная модель объясняет 83,8% общей вариации результата у , на долю необъясненной вариации приходится 16,2%. Следовательно, качество модели высокое.

Найдем величину средней ошибки аппроксимации А i .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора. Ошибка аппроксимации А i , :

, i =1…15.

Средняя ошибка аппроксимации:

.

Ошибка небольшая, качество модели высокое.

2.2.4.Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,414%.

2.2.5. Оценим статистическую значимость полученного уравнения.
Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т.е. полученное уравнение статистически незначимо. Примем α=0,05.

Найдем табличное (критическое) значение F -критерия Фишера:

Найдем фактическое значение F -критерия Фишера:

следовательно, гипотеза H 0 отвергается, принимается альтернативная гипотеза H 1 : с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Построим уравнение регрессии на поле корреляции

2.3. Модель степенной парной регрессии.

2.3.1. Рассчитаем параметры а и b степенной регрессии:

Расчету параметров предшествует процедура линеаризации данного уравнения:

и замена переменных:

Y=lny, X=lnx, A=lna

Параметры уравнения:

определяются методом наименьших квадратов:


Рассчитываем таблицу 3.

Определяем b :

Уравнение регрессии:

Построим уравнение регрессии на поле корреляции:

2.3.2. Оценим тесноту связи между признаками у и х с помощью индекса парной корреляции R yx .

Предварительно рассчитаем теоретическое значение для каждого значения фактора x, и , тогда:

Значение индекса корреляции R xy близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида:

2.3.3. Оценим качество построенной модели.

Определим индекс детерминации:

R 2 =0,936 2 =0,878,

т. е. данная модель объясняет 87,6% общей вариации результата у, а на долю необъясненной вариации приходится 12,4%.

Качество модели высокое.

Найдем величину средней ошибки аппроксимации.

Ошибка аппроксимации А i , i =1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.3.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,438%.

2.3.5.Оценим статистическую значимость полученного уравнения.

Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05.

табличное (критическое) значение F -критерия Фишера:

фактическое значение F -критерия Фишера:

следовательно, гипотеза H 0 отвергается, принимается альтернативная гипотеза H 1 : с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Таблица 3

3. Выбор лучшего уравнения.

Составим таблицу полученных результатов исследования.

Таблица 4

Анализируем таблицу и делаем выводы.

ú Все три уравнения оказались статистически значимыми и надежными, имеют близкий к 1 коэффициент (индекс) корреляции, высокий (близкий к 1) коэффициент (индекс) детерминации и ошибку аппроксимации в допустимых пределах.

ú При этом характеристики линейной модели указывают, что она несколько лучше полулогарифмической и степенной описывает связь между признаками x и у.

ú Поэтому в качестве уравнения регрессии выбираем линейную модель.

При постановке вопроса о корреляционной зависимости между двумя статистическими признаками Х и У проводят эксперимент с параллельной регистрацией их значений.

Пример 8.1.

Определить, зависит ли результат прыжка в длину с разбега (признак Х) от величины конечной скорости разбега (признак У). Для ответа на этот вопрос параллельно с регистрацией результата Х каждого прыжка спортсмена или группы спортсменов регистрируют и величину конечной скорости разбега Y . Пусть они таковы:

Таблица 5

I
xi (см)
yi (м/с) 10,7 10,5 10,1 9,8 10,1 10,5 9,1 9,6

Представим таблицу 5 в виде графика в прямоугольной системе координат, где на горизонтальной оси будем откладывать длину прыжка (Х), а на вертикальной - величину конечной скорости разбега в этом прыжке (Y).
function PlayMyFlash(cmd){ Corel_.TPlay(cmd); }

№1 !!! №2 !!! №3 !!! №4 !!! №5!!! №6 !!! №7 !!! №8!!!

Рис. 8. График корреляционного поля.

Будем называть корреляционным полем зону разброса таким образом полученных точек на графике. Визуально анализируя корреляционное поле на рисунке 8, можно заметить, что оно как бы вытянуто вдоль какой-либо прямой линии. Такая картина характерна для так называемой линейной корреляционной взаимосвязи между признаками. При этом можно в общем предположить, что с увеличением конечной скорости разбега увеличивается и длина прыжка, и наоборот. Т.е. между рассматриваемыми признаками наблюдается прямая (положительная) взаимосвязь.

Наряду с этим примером из множества других возможных корреляционных полей можно выделить следующие (рис.9-11):

На рисунке 9 тоже просматривается линейная взаимосвязь, но с увеличением значений одного признака, уменьшаются значения другого, и наоборот, т.е. связь обратная или отрицательная. Можно предположить, что на рисунке 11 точки корреляционного поля разбросаны около какой-то кривой линии. В таком случае говорят, что между признаками существует криволинейная корреляционная связь.

В отношении корреляционного поля, изображенного на рисунке 10, нельзя сказать, что точки располагаются вдоль какой-то прямой или кривой линии, оно имеет сферическую форму. В этом случае говорят, что признаки Х и Y не зависят друг от друга.

Кроме этого по корреляционному полю можно примерно судить о тесноте корреляционной связи, если эта связь существует. Здесь говорят: чем меньше точки разбросаны около воображаемой усредненной линии, тем теснее корреляционная связь между рассматриваемыми признаками.

Визуальный анализ корреляционных полей помогает разобраться в сущности корреляционной взаимосвязи, позволяет высказать предположение о наличии, направленности и тесноте связи. Но точно сказать, имеется связь между признаками или нет, линейная связь или криволинейная, тесная связь (достоверная) или слабая (недостоверная), с помощью этого метода нельзя. Наиболее точным методом выявления и оценки линейной взаимосвязи между признаками является метод определения различных корреляционных показателей по статистическим данным.

3. Коэффициенты корреляции и их свойства

Часто для определения достоверности взаимосвязи между двумя признаками(Х, У) используютнепараметрический (ранговый) коэффициент корреляции Спирмена и параметрический коэффициент корреляции Пирсона . Величина этих показателей корреляционной связи определяется по следующим формулам:

(1)

Где: dx - ранги статистических данных признака х;

dy - ранги статистических данных признака у.

(2)

Где: - статистические данные признака х,

Статистические данные признака у.

Эти коэффициенты обладают такими мощными признаками:

1. На основании коэффициентов корреляции можно судить только о прямолинейной корреляционной взаимосвязи между признаками. О криволинейной связи с их помощью ничего сказать нельзя.
2. Значения коэффициентов корреляции есть безразмерная величина, которая не может быть меньше -1 и больше +1, т.е.
3.
4. Если значения коэффициентов корреляции равны нулю, т.е. = 0 или = 0, то связь между признаками х, у отсутствует.
5. Если значения коэффициентов корреляции отрицательные, т.е. < 0 или < 0, то связь между признаками Х и Y обратная .
6. Если значения коэффициентов корреляции положительные, т.е. > 0 или y> 0 , то связь между признаками Х и Y прямая (положительная).
7. Если коэффициенты корреляции принимают значения +1 или -1, т.е. = ± 1 или = ± 1, то связь между признаками Х и Y линейная (функциональная) .
8. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Эта достоверность еще зависит от числа степеней свободы.

Где: n - число коррелируемых пар статистических данных признаков Х и Y.

Чем больше n , тем выше достоверность связи при одном и том же коэффициенте корреляции.

Кроме перечисленных общих свойств у рассматриваемых коэффициентов корреляции имеются и различия. Главное их отличие состоит в том, что коэффициент Пирсона ( может быть использован только в случае нормальности распределения признаков Х и Y , коэффициент Спирмена () может быть использован для признаков с любым видом распределения. Если рассматриваемые признаки имеют нормальное распределение, то целесообразнее определять наличие корреляционной связи с помощью коэффициента Пирсона (), т.к. в этом случае он будет иметь меньшую погрешность, чем коэффициент Спирмена ().

Пример 8.2.

Определить с помощью рангового коэффициента корреляции Спирмена существует ли взаимосвязь между результатами прыжка в длину с разбега (X) и конечной скоростью разбега (Y) группы спортсменов (данные примера 8.1, табл. 5).

В формуле (1) dx и dy ранги статистических данных, т.е. места вариант в их ранжированной совокупности. Если в совокупности несколько одинаковых данных, то их ранги равны и определяются как среднее значение от мест, занимаемых этими вариантами. Например,

Данные xi
Ранги dx 4,5 4,5 4,5 4,5 7,5 7,5
3 + 4 + 5 + 6 7 + 8

Пользуясь этим правилом, определим ранги данных таблицы 5. Для удобства все запишем в виде таблицы 6.

Таблица 6

dx dy dx - dy
9,1 1 - 1 = 0 02 = 0
9,6 2 - 2 = 0 02 = 0
9,8 3 - 3 = 0 02 = 0
10,1 4 - 4 = 0 02 = 0
10,5 6,5 5 - 6,5 = - 1,5 (- 1,5)2 = 2,25
10,5 6,5 6 - 6,5 = - 0,5 (- 0,5)2 = 0,25
10,3 7 - 5 = 2 22 = 4
10,7 8 - 8 = 0 02 = 0
(dx-dy) = 0

В данном случае имеем 8 пар значений, т.е. 8 коррелируемых пар. Значит n = 8. Подставив полученное в формулу (1), будем иметь:

Вывод:

(0,92 > 0) , то между признаками Х и У У Х ), и наоборот - с уменьшением скорости разбега уменьшается длина прыжка. Достоверность коэффициента корреляции Спирмена определяется по таблице критических значений рангового коэффициента корреляции .

б) т.к. полученное значение коэффициента корреляции = 0,9 больше табличного значений = 0,88, соответствующего уровню b = 99%, то уверенность в правильности вывода (а) больше 99%. Такая достоверность позволяет распространить вывод (а) на всю генеральную совокупность, т.е. на всех прыгунов в длину.

Если не производится предварительной проверки рассматриваемых совокупностей на нормальность распределения, то, в случае недостоверности коэффициента корреляции Пирсона, следует проверить наличие связи еще и по коэффициенту Спирмена.

Пример 8.3.

Ранговым коэффициентом корреляции можно выявлять взаимосвязи между переменными, имеющими любые статистические распределения. Но если эти переменные имеют нормальное распределение (Гаусса), то более точно связь можно установить с помощью нормированного (Бравэ-Пирсона) коэффициента корреляции.

Предположим, что в нашем примере и - отвечают закону нормального распределения, и проверим наличие связи между результатами тестаX и Y c помощью расчета нормированного коэффициента корреляции.

Из формулы (1) видно, что для вычисления необходимо найти средние значения признаковX, Y и отклонения каждого статистического данного от его среднего . Зная эти значения, можно найти суммы по которым не сложно вычислить

По данным таблице 5 заполним таблицу 7:

Таблица 7

962 = 9216 10,7 0,6 0,62 = 0,36 96 · 0,6 = 57,6
262 = 676 10,5 0,4 0,42 = 0,16 26 · 0,4 = 10,4
10,3 0,2 0,04 5,4
- 4 9,8 - 0,3 0,09 1,2
10,1 0,00 1,0
10,5 0,4 0,16 3,2
- 92 9,1 - 1,0 1,00 9,2
- 64 9,6 - 0,5 0,25 32,0
= 23262 = 2,06 = 201

Подставив сумму столбца 7 в числитель формулы (1), а суммы столбцов 3 и 6 в знаменатель, получим:

Вывод:

а) т.к. значение коэффициента корреляции положительное (0.92>0) , то между Х и Y наблюдается прямая связь, т.е. с увеличением скорости разбега (признакY ) увеличивается длина прыжка (признак Х ) и наоборот - с уменьшением скорости разбега уменьшается длина прыжка. Очень важно знать уверенность в правильности полученного вывода.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?