Подпишись и читай
самые интересные
статьи первым!

Оценка параметров линейной регрессии по выборке. Оценка параметров регрессионной модели

Корреляционный анализ .

Уравнение парной регрессии .

Использование графического метода .

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции .

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Здесь ε - случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную модель значимых объясняющих переменных;

2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание структуры модели;

4. Неправильная функциональная спецификация;

5. Ошибки измерения.

Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:

1) по наблюдениям x i и y i можно получить только оценки параметров α и β

2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;

Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.

Для оценки параметров α и β - используют МНК (метод наименьших квадратов). Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии.

Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (ε) и независимой переменной (x).

Формально критерий МНК можно записать так:

S = ∑(y i - y * i) 2 → min

Система нормальных уравнений.

a n + b∑x = ∑y

a∑x + b∑x 2 = ∑y x

Для наших данных система уравнений имеет вид

15a + 186.4 b = 17.01

186.4 a + 2360.9 b = 208.25

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = -0.07024, a = 2.0069

Уравнение регрессии (эмпирическое уравнение регрессии):

y = -0.07024 x + 2.0069

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов β i , а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация .

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < r xy < 0.3: слабая;

0.3 < r xy < 0.5: умеренная;

0.5 < r xy < 0.7: заметная;

0.7 < r xy < 0.9: высокая;

0.9 < r xy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X высокая и обратная.

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = -0.0702 x + 2.01

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = -0.0702 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -0.0702.

Коэффициент a = 2.01 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь обратная.

1.3. Коэффициент эластичности .

Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.

Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты.

Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.

Коэффициент эластичности находится по формуле:

Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.

Бета – коэффициент

Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения S x приведет к уменьшению среднего значения Y на 0.82 среднеквадратичного отклонения S y .

1.4. Ошибка аппроксимации .

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.

Линейная регрессия сводится к нахождению уравнения вида

Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которая представляют собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров- а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров - а и b - и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n- объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.

Формально a - значение y при x=0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, функцию издержек



Табл. 1.

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9
141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a= -5,79, b=36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

В качестве другого примера рассмотрим функцию потребления в виде:

,

где С- потребление, y –доход, K,L- параметры. Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством:

,

где I – размер инвестиций, r - сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений:

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. .

Предположим, что функция потребления составила:

.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. , то уравнение регрессии составит . Это уравнение можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством:

Если коэффициент регрессии оказывается больше единицы, то , и на потребление расходуются не только доходы, но и сбережения.



Коэффициент регрессии в функции потребления используется для расчета мультипликатора:

Здесь m ≈2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

Его значения находятся в границах: . Если b > 0, то при b < 0 . По данным примера , что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции r 2 . Он характеризует долю дисперсии результативного признака y , объясняемую регрессией, в общей дисперсии результативного признака:

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

В примере . Уравнением регрессии объясняется 98,2 % дисперсии , а на прочие факторы приходится 1,8 %, это остаточная дисперсия.

Предпосылки МНК (условия Гаусса-Маркова)

Как было сказано выше, связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса – Маркова):

1 0 . Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2 0 . Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений)

3 0 . Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4 0 . Случайное отклонение должно быть независимо от объясняющих переменных.

Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса -Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса-Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т.е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса-Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

Линейная регрессия находит широкое применение в экономет­рике в виде четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида

Или . (4.6)

Уравнение вида позволяет по заданным значени­ям фактора х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения представляют линию регрессии (рис. 4.2).

Рис. 4.2. Графическая оценка параметров линейной регрессии

Построение линейной регрессии сводится к оценке ее пара­метров и .Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратиться к полю корреляции и, выбрав на графике две точки, провести через них прямую линию (см. рис. 4.2). Далее по графику можно опреде­лить значения параметров. Параметр определим как точку пе­ресечения линии регрессии с осью ,а параметр оценим, исхо­дя из угла наклона линии регрессии, как ,где прираще­ние результата у, a приращение фактора х, т. е.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров и ,при которых сумма квадратов отклонений фактических значений ре­зультативного признака (у) от расчетных (теоретических) ми­нимальна:

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной:

cследовательно,

Чтобы найти минимум функции (4.7), надо вычислить част­ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S , тогда:

Преобразуя эту систему, получим следующую систему нор­мальных уравнений для оценки параметров и :

. (4.8)

Решая систему нормальных уравнений (4.8) либо методом последовательного исключения переменных, либо методом оп­ределителей, найдем числовые значения искомых параметров и . Можно воспользоваться следующими готовыми формулами:

. (4.9)

Формула (4.9) получена из первого уравнения системы (4.8), если все его члены разделить на п.

где ковариация признаков;

Дисперсия признака x .

Ввиду того, что , ,получим следующую формулу расчета оценки параметра b :

. (4.10)

Параметр называется коэффициентом регрессии. Его вели­чина показывает среднее изменение результата с изменением фактора на одну единицу. Так, если в функции издержек (у - издержки (тыс. руб.), х - количество единиц продукции). То, следовательно, с увеличением объема продукции (х) на 1 ед. издержки производства возрастают в среднем на 2 тыс. руб., т. е. дополнительный прирост продукции на 1 ед. потребует увеличения затрат в среднем на 2 тыс. руб.


Возможность четкой экономической интерпретации коэф­фициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследова­ниях.

Формально - значение у при х = 0. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка свободного члена не имеет смысла. Параметр может не иметь экономического содержания. Попытки экономически интерпретировать параметр а могут привести к абсурду, особен­но при < 0.


Рис. 2.1. График линии регрессии

Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии (рис. 2.1).

Построение линейной регрессии сводится к оценке ее параметров а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и b, при которых сумма квадратов отклонений фактических значений от теоретических минимальна:

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров – а и b – и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n - объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при x = 0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0 <

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции .

Таблица 2.1

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9

Продолжение таблицы 2.1

141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a = -5,79, b = 36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

2.3. Предпосылки МНК (условия Гаусса-Маркова)

Связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса-Маркова):

1. Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2. Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью - постоянством дисперсии отклонений. Невыполнимость данной предпосылки называется гетероскедастичностью - непостоянством дисперсии отклонений.

3. Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4. Случайное отклонение должно быть независимо от объясняющих переменных. Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса-Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса- Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т. е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса- Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

2.4. Оценка существенности параметров линейной
регрессии и корреляции

После того, как найдено уравнение линейной регрессии (3), проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом дается с помощью F -критерия Фишера. При этом выдвигается нулевая гипотеза о том, что коэффициент регрессии равен нулю и, следовательно, фактор х не оказывает влияния на результат y.

Перед расчетом критерия проводятся анализ дисперсии. Можно показать, что общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части – объясненную и необъясненную:


(Общая СКО) =

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и .

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Но на практике в правой части (13) присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y . Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы. (df-degrees of freedom ) - это число независимо варьируемых значений признака.

Для общей СКО требуется независимых отклонений, т. к. что позволяет свободно варьировать значений, а последнее n -е отклонение определяется из общей суммы, равной нулю. Поэтому .

Факторную СКО можно выразить так:

Эта СКО зависит только от одного параметра b, поскольку выражение под знаком суммы к значениям результативного признака не относится. Следовательно, факторная СКО имеет одну степень свободы, и

Для определения воспользуемся аналогией с балансовым равенством (11). Так же, как и в равенстве (11), можно записать равенство и между числами степеней свободы:

Таким образом, можем записать . Из этого баланса определяем, что

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы:

. (15)

. (16)

. (17)

Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим F -критерий для проверки нулевой гипотезы, которая в данном случае записывается как

Если справедлива, то дисперсии не отличаются друг от друга. Для необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз.

Английским статистиком Снедекором разработаны таблицы критических значений F при разных уровнях существенности Снедекором и различных числах степеней свободы. Табличное значение F -критерия – это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы.

При нахождении табличного значения F -критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы – числителя (она равна единице) и знаменателя, равная

Вычисленное значение F признается достоверным (отличным от единицы), если оно больше табличного, т. е. (α;1; ). В этом случае отклоняется и делается вывод о существенности превышения D факт над D остат. , т. е. о существенности статистической связи между y и x.

Если , то вероятность выше заданного уровня (например: 0,05), и эта гипотеза не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи между y и x. Уравнение регрессии считается статистически незначимым, не отклоняется.

Величина F -критерия связана с коэффициентом детерминации.

, (19)

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров.

Стандартная ошибка коэффициента регрессии определяется по формуле:

, (20)

Остаточная дисперсия на одну степень свободы (то же, что и ).

Величина стандартной ошибки совместно с t- распределением Стьюдента при степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительных интервалов.

Величина коэффициента регрессии сравнивается с его стандартной ошибкой; определяется фактическое значение t- критерия Стьюдента

которое затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы . Здесь проверяется нулевая гипотеза в виде также предполагающая несущественность статистической связи между y и х , но только учитывающая значение b , а не соотношение между факторной и остаточной дисперсиями в общем балансе дисперсии результативного признака. Но общий смысл гипотез один и тот же: проверка наличия статистической связи между y и х или её отсутствия.

Если (α; ), то гипотеза должна быть отклонена, а статистическая связь y с х считается установленной. В случае (α; ) нулевая гипотеза не может быть отклонена, и влияние х на y признается несущественным.

Существует связь между и F :

Отсюда следует, что

Доверительный интервал для b определяется как

где – рассчитанное (оцененное) по МНК значение коэффициента регрессии.

Стандартная ошибка параметра определяется по формуле:

Процедура оценивания существенности a не отличается от таковой для параметра b . При этом фактическое значение t -критерия вычисляется по формуле:

Процедура проверки значимости линейного коэффициента корреляции отличается от процедур, приведенных выше. Это объясняется тем, что r как случайная величина распределена по нормальному закону лишь при большом числе наблюдений и малых значениях |r |. В этом случае гипотеза об отсутствии корреляционной связи между y и х проверяется на основе статистики

, (26)

которая при справедливости приблизительно распределена по закону Стьюдента с () степенями свободы. Если , то гипотеза отвергается с вероятностью ошибиться, не превышающей α . Из (19) видно, что в парной линейной регрессии . Кроме того, , поэтому . Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Но при малых выборках и значениях r , близких к , следует учитывать, что распределение r как случайной величины отличается от нормального, и построение доверительных интервалов для r не может быть выполнено стандартным способом. В этом случае вообще легко прийти к противоречию, заключающемуся в том, что доверительный интервал будет содержать значения, превышающие единицу.

Чтобы обойти это затруднение, используется так называемое
z -преобразование Фишера:

, (27)

которое дает нормально распределенную величину z , значения которой при изменении r от –1 до +1 изменяются от -∞ до +∞. Стандартная ошибка этой величины равна:

. (28)

Для величины z имеются таблицы, в которых приведены её значения для соответствующих значений r .

Для z выдвигается нуль-гипотеза , состоящая в том, что корреляция отсутствует. В этом случае значения статистики

которая распределена по закону Стьюдента с () степенями свободы, не превышает табличного на соответствующем уровне значимости.

Для каждого значения z можно вычислить критические значения r . Таблицы критических значений r разработаны для уровней значимости 0,05 и 0,01 и соответствующего числа степеней свободы. Если вычисленное значение r превышает по абсолютной величине табличное, то данное значение r считается существенным. В противном случае фактическое значение несущественно.

2.5. Нелинейные модели регрессии
и их линеаризация

До сих пор мы рассматривали лишь линейную модель регрессионной зависимости y от x (3). В то же время многие важные связи в экономике являются нелинейными . Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства – трудом, капиталом и т. п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары – с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

. (31)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т. е. трем:

(32)

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

Если , то имеет место максимум, т. е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, неявляющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

. (33)

Примером такой зависимости является кривая Филлипса , констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля.

Другим примером зависимости (33) являются кривые Энгеля , формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае а результативный признак в (33) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (33) сводится к замене фактора , и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z :

К такому же линейному уравнению сводится полулогарифмическая кривая:

, (35)

которая может быть использована для описания кривых Энгеля. Здесь ln(x ) заменяется на z и получается уравнение (34).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

или в виде

. (37)

Возможна и такая зависимость:

. (38)

В регрессиях типа (36) – (38) применяется один и тот же способ линеаризации – логарифмирование. Уравнение (36) приводится к виду:

. (39)

Замена переменной сводит его к линейному виду:

, (40)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (36) оцениваются по МНК из уравнения (40). Уравнение (37) приводится к виду:

который отличается от (39) только видом свободного члена, и линейное уравнение выглядит так:

, (42)

где . Параметры А и b получаются обычным МНК, затем параметр a в зависимости (37) получается как антилогарифм А . При логарифмировании (38) получаем линейную зависимость:

, (43)

где , а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (38) получается как антилогарифм коэффициента В .

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х . Преобразуя (44) путем логарифмирования, получаем линейную регрессию:

, (45)

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

. (46)

Проводя замену , получим.

Линейная регрессия сводится к нахождению уравнения вида:

Первое выражение позволяет по заданным значениям фактора х рассчитать теоретические значения результативного признака, подставляя в него фактические значения факторах. На графике (рис. 1.2) теоретические значения лежат на прямой, которая представляет собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров - а и Ь. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и Ь, при которых сумма квадратов отклонений фактических значений у от теоретических у х минимальна:

Рис. 1.2.

Для нахождения минимума надо вычислить частные производные суммы (1.4) по каждому из параметров (а и ft) и приравнять их к нулю:

После преобразования получаем систему нормальных уравнений:

В системе п - объем выборки, суммы легко рассчитываются из исходных данных. Решая систему относительно а и Ь, получаем:

Выражение (1.7) можно записать в другом виде:

где cov(x, у) - ковариация признаков; су* - дисперсия фактора х.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с увеличением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально а - значение у при х = 0. Если х не имеет и не может иметь нулевого значения, то такая трактовка свободного члена а не имеет смысла. Параметр а чаще всего не имеет экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при а 0. Интерпретировать можно лишь знак при параметре а. Если а > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где

При этом свободный член равен нулю, что и отражено в выражении (1.10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (1.3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами (Зс, у). При этом в выражении (1.8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена. Выражения (1.7) и (1.9) при этом также упрощаются.

В качестве примера рассмотрим на группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции у = а + Ьх + е (табл. 1.1).

Система нормальных уравнений будет иметь вид

Решая ее, получаем а - -5,79, b - 36,84.

Уравнение регрессии имеет вид

Таблица 1.1

Исходные данные для оценки параметров парной линейной модели

Выпуск продукции (х), тыс. ед.

Затраты на производство (у), млн руб.

Подставив в уравнение регрессии значения х, найдем теоретические значения у (последняя колонка табл. 1.1).

Величина а не имеет экономического смысла. Если переменные х и у выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится: у" = 36,84х", где у" = у-у, х" = х-х.

В качестве другого примера рассмотрим функцию потребления в виде:

где С - потребление; у - доход; К, L - параметры.

Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством

где / - размер инвестиций; г - сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. К 1.

Предположим, что функция потребления составила С = 1,9 + 0,65у.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. I = а + by, то уравнение регрессии будет I = -1,9 + 0,35у. Его можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством 0,65 + 0,35 = 1. Если коэффициент регрессии оказывается больше единицы, то у и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии К в функции потребления используется для расчета мультипликатора:

где т » 2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции г.

Его значения находятся в границах: - 1 r 1. Если 6>0,то0 г b 0-1 г 0. По данным примера расчет выражения (1.11) дает г = 0,991, что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции I 2 . Он характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Величина 1 - г 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтенных в модели факторов.

В примере г 2 = 0,982. Уравнением регрессии объясняется 98,2% дисперсии у, а на прочие факторы приходится 1,8% - это остаточная дисперсия.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?