Подпишись и читай
самые интересные
статьи первым!

Условия равновесия твердого тела. Равновесие тел Условия равновесия твердого тела

Равновесие механической системы — это состояние, при котором все точки механической системы находятся в покое по отношению к рассматриваемой системе отсчета. Если система отсчета инерциальна, равновесие называется абсолютным , если неинерциальна — относительным .

Для нахождения условий равновесия абсолютно твердого тела необходимо мысленно разбить его на большое число достаточно малых элементов, каждый из которых можно представить материальной точкой. Все эти элементы взаимодействуют между собой — эти силы взаимодействия называются внутренними . Помимо этого на ряд точек тела могут действовать внешние силы.

Согласно второму закону Ньютона , чтобы ускорение точки равнялось нулю (а ускорение покоящейся точки равно нулю), геометрическая сумма сил, действующих на эту точку, должна быть равна нулю. Если тело находится в покое, значит, все его точки (элементы) также находятся в покое. Следовательно, для любой точки тела можно записать:

где — геометрическая сумма всех внешних и внутренних сил, действующих на i -й элемент тела.

Уравнение означает, что для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех сил, действующих на любой элемент этого тела, была равна нулю.

Из легко получить первое условие равновесия тела (системы тел). Для этого достаточно просуммировать уравнение по всем элементам тела:

.

Вторая сумма равна нулю согласно третьему закону Ньютона : векторная сумма всех внутренних сил системы равна нулю, т. к. любой внутренней силе соответствует сила, равная по модулю и противоположная по направлению.

Следовательно,

.

Первым условием равновесия твердого тела (системы тел) является равенство нулю геометрической суммы всех внешних сил, приложенных к телу.

Это условие является необходимым, но не достаточным. В этом легко убедиться, вспомнив о вращающем действии пары сил, геометрическая сумма которых тоже равна нулю.

Вторым условием равновесия твердого тела является равенство нулю суммы моментов всех внешних сил, действующих на тело, относительно любой оси.

Таким образом, условия равновесия твердого тела в случае произвольного числа внешних сил выглядят так:

.
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

«Физика - 10 класс»

Вспомните, что такое момент силы.
При каких условиях тело находится в покое?

Если тело находится в покое относительно выбранной системы отсчёта, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчёт, считая тело абсолютно твёрдым .

Для краткости абсолютно твёрдое тело будем называть твёрдым телом или просто телом . Изучив условия равновесия твёрдого тела, мы найдём условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Вспомните определение абсолютно твёрдого тела.

Раздел механики, в котором изучаются условия равновесия абсолютно твёрдых тел, называется статикой .

В статике учитываются размеры и форма тел, в этом случае существенным является не только значение сил, но и положение точек их приложения.

Выясним вначале с помощью законов Ньютона, при каком условии любое тело будет находиться в равновесии. С этой целью разобьём мысленно всё тело на большое число малых элементов, каждый из которых можно рассматривать как материальную точку. Как обычно, назовём силы, действующие на тело со стороны других тел, внешними, а силы, с которыми взаимодействуют элементы самого тела, внутренними (рис. 7.1). Так, сила 1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила же 2,1 действует на элемент 2 со стороны элемента 1. Это внутренние силы; к ним относятся также силы 1,3 и 3,1 , 2,3 и 3,2 . Очевидно, что геометрическая сумма внутренних сил равна нулю, так как согласно третьему закону Ньютона

12 = - 21 , 23 = - 32 , 31 = - 13 и т.д.

Статика - частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения ( = 0).

На каждый элемент в общем случае может действовать несколько внешних сил. Под 1 , 2 , 3 и т. д. будем понимать все внешние силы, приложенные соответственно к элементам 1, 2, 3, ... . Точно так же через " 1 , " 2 , " 3 и т. д. обозначим геометрическую сумму внутренних сил, приложенных к элементам 2, 2, 3, ... соответственно (эти силы не показаны на рисунке), т. е.

" 1 = 12 + 13 + ... , " 2 = 21 + 22 + ... , " 3 = 31 + 32 + ... и т.д.

Если тело находится в покое, то ускорение каждого элемента равно нулю. Поэтому согласно второму закону Ньютона будет равна нулю и геометрическая сумма всех сил, действующих на любой элемент. Следовательно, можно записать:

1 + "1 = 0, 2 + "2 = 0, 3 + "3 = 0. (7.1)

Каждое из этих трёх уравнений выражает условие равновесия элемента твёрдого тела.


Первое условие равновесия твёрдого тела.


Выясним, каким условиям должны удовлетворять внешние силы, приложенные к твёрдому телу, чтобы оно находилось в равновесии. Для этого сложим уравнения (7.1):

(1 + 2 + 3) + ("1 + "2 + "3) = 0.

В первых скобках этого равенства записана векторная сумма всех внешних сил, приложенных к телу, а во вторых - векторная сумма всех внутренних сил, действующих на элементы этого тела. Но, как известно, векторная сумма всех внутренних сил системы равна нулю, так как согласно третьему закону Ньютона любой внутренней силе соответствует сила, равная ей по модулю и противоположная по направлению. Поэтому в левой части последнего равенства останется только геометрическая сумма внешних сил, приложенных к телу:

1 + 2 + 3 + ... = 0 . (7.2)

В случае абсолютно твёрдого тела условие (7.2) называют первым условием его равновесия .

Оно является необходимым, но не является достаточным.

Итак, если твёрдое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось ОХ можно записать:

F 1x + F 2x + F 3x + ... = 0. (7.3)

Такие же уравнения можно записать и для проекций сил на оси OY и OZ.



Второе условие равновесия твёрдого тела.


Убедимся, что условие (7.2) является необходимым, но недостаточным для равновесия твёрдого тела. Приложим к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2. Сумма этих сил равна нулю:

+ (-) = 0. Но доска тем не менее будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис. 7.3).

Какое же ещё условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твёрдое тело находилось в равновесии? Воспользуемся теоремой об изменении кинетической энергии.

Найдём, например, условие равновесия стержня, шарнирно закреплённого на горизонтальной оси в точке О (рис. 7.4). Это простое устройство, как вам известно из курса физики основной школы, представляет собой рычаг первого рода.

Пусть к рычагу приложены перпендикулярно стержню силы 1 и 2 .

Кроме сил 1 и 2 , на рычаг действует направленная вертикально вверх сила нормальной реакции 3 со стороны оси рычага. При равновесии рычага сумма всех трёх сил равна нулю: 1 + 2 + 3 = 0.

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол α. Точки приложения сил 1 и 2 пройдут пути s 1 = ВВ 1 и s 2 = CC 1 (дуги ВВ 1 и СС 1 при малых углах α можно считать прямолинейными отрезками). Работа А 1 = F 1 s 1 силы 1 положительна, потому что точка В перемещается по направлению действия силы, а работа А 2 = -F 2 s 2 силы 2 отрицательна, поскольку точка С движется в сторону, противоположную направлению силы 2 . Сила 3 работы не совершает, так как точка её приложения не перемещается.

Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага а, измеренный в радианах: s 1 = α|ВО| и s 2 = α|СО|. Учитывая это, перепишем выражения для работы так:

А 1 = F 1 α|BO|, (7.4)
А 2 = -F 2 α|CO|.

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил 1 и 2 , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил

Как вы уже знаете, плечо силы - это кратчайшее расстояние от оси вращения до линии действия силы. Будем обозначать плечо силы буквой d. Тогда |ВО| = d 1 - плечо силы 1 , а |СО| = d 2 - плечо силы 2 . При этом выражения (7.4) примут вид

А 1 = F 1 αd 1 , А 2 = -F 2 αd 2 . (7.5)

Из формул (7.5) видно, что работа каждой из сил равна произведению момента силы на угол поворота рычага. Следовательно, выражения (7.5) для работы можно переписать в виде

А 1 = М 1 α, А 2 = М 2 α, (7.6)

а полную работу внешних сил можно выразить формулой

А = А 1 + А 2 = (М 1 + М 2)α. α, (7.7)

Так как момент силы 1 положителен и равен М 1 = F 1 d 1 (см. рис. 7.4), а момент силы 2 отрицателен и равен М 2 = -F 2 d 2 , то для работы А можно записать выражение

А = (М 1 - |М 2 |)α.

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершать работу, т. е. в этом случае А ≠ 0 и соответственно М 1 + М 2 ≠ 0.

Если работа внешних сил равна нулю, то кинетическая энергия тела не изменяется (остаётся равной нулю) и тело остаётся неподвижным. Тогда

М 1 + М 2 = 0 . (7.8)

Уравнение (7 8) и есть второе условие равновесия твёрдого тела .

При равновесии твёрдого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твёрдого тела следующие:

1 + 2 + 3 + ... = 0, (7.9)
М 1 + М 2 + М 3 + ... = 0
.

Второе условие равновесия можно вывести из основного уравнения динамики вращательного движения твёрдого тела. Согласно этому уравнению где М - суммарный момент сил, действующих на тело, М = М 1 + М 2 + М 3 + ... , ε - угловое ускорение. Если твёрдое тело неподвижно, то ε = 0, и, следовательно, М = 0. Таким образом, второе условие равновесия имеет вид М = М 1 + М 2 + М 3 + ... = 0.

Если тело не абсолютно твёрдое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равны нулю.

Приложим, например к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

Тело находится в состоянии покоя (или движется равномерно и прямолинейно), если векторная сумма всех сил, действующих на него, равна нулю. Говорят, что силы уравновешивают друг друга. Когда мы имеем дело с телом определенной геометрической формы, при вычислении равнодействующей силы можно все силы прикладывать к центру масс тела.

Условие равновесия тел

Чтобы тело, которое не вращается, находилось в равновесии, необходимо, чтобы равнодействующая всех сил, действующий на него, была равна нулю.

F → = F 1 → + F 2 → + . . + F n → = 0 .

На рисунке выше изображено равновесие твердого тела. Брусок находится в состоянии равновесия под действием трех действующих не него сил. Линии действия сил F 1 → и F 2 → пересекаются в точке O . Точка приложения силы тяжести - центр масс тела C . Данные точки лежат на одной прямой, и при вычислении равнодействующей силы F 1 → , F 2 → и m g → приводятся к точке C .

Условия равенства нулю равнодействующей всех сил недостаточно, если тело может вращаться вокруг некоторой оси.

Плечом силы d называется длина перпендикуляра, проведенного от линии действия силы к точке ее приложения. Момент силы M - произведение плеча силы на ее модуль.

Момент силы стремится повернуть тело вокруг оси. Те моменты, которые поворачивают тело против часовой стрелки, считаются положительными. Единица измерения момента силы в международной системе CИ - 1 Н ь ю т о н м е т р.

Определение. Правило моментов

Если алгебраическая сумма всех моментов, приложенных к телу относительно неподвижной оси вращения, равна нулю, то тело находится в состоянии равновесия.

M 1 + M 2 + . . + M n = 0

Важно!

В общем случае для равновесия тел необходимо выполнение двух условий: равенство нулю равнодействующей силы и соблюдение правила моментов.

В механике есть разные виды равновесия. Так, различают устойчивое и неустойчивое, а также безразличное равновесие.

Типичный пример безразличного равновесия - катящееся колесо (или шар), которое, если остановить его в любой точке, окажется в состоянии равновесия.

Устойчивое равновесие - такое равновесие тела, когда при его малых отклонениях возникают силы или моменты сил, которые стремятся вернуть тело в равновесное состояние.

Неустойчивое равновесие - состояние равновесия, при малом отклонении от которого силы и моменты сил стремятся вывести тело из равновесия еще больше.

На рисунке выше положение шара (1) - безразличное равновесие, (2) - неустойчивое равновесие, (3) - устойчивое равновесие.

Тело с неподвижной осью вращения может находится в любом из описанных положений равновесия. Если ось вращения проходит через центр масс, возникает безразличное равновесие. При устойчивом и неустойчивом равновесии центр масс располагается на вертикальной прямой, которая проходит через ось вращения. Когда центр масс находится ниже оси вращения, равновесие является устойчивым. Иначе - наоборот.

Особый случай равновесия - равновесие тела на опоре. При этом упругая сила распределяется по всему основанию тела, а не проходит через одну точку. Тело покоится в равновесии, когда вертикальная линия, проведенная через центр масс, пересекает площадь опоры. Иначе, если линия из центра масс не попадает в контур, образованный линиями, соединяющими точки опоры, тело опрокидывается.

Пример равновесия тела на опоре - знаменитая Пизанская башня. По легенде с нее сбрасывал шары Галилео Галилей, когда проводил свои опыты по изучению свободного падения тел.

Линия, проведенная из центра масс башни пересекает основание приблизительно в 2,3 м от его центра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?