Подпишись и читай
самые интересные
статьи первым!

Когда появилось и кто открыл электричество в россии. Что такое электричество и что значит работа тока? Объясняем доступным языком

Этот термин в основном используется для описания электрической энергии, электрической силы и электричества самого по себе. Электрическая – это наиболее разносторонне применяемый тип энергий из всех используемых человечеством. Она используется для освещения, обогрева, охлаждения, передвижения, связи и других повседневных целей.

Электричество наиболее просто описать с помощью теории атомного строения материи. Согласно ей, наименьшей структурной единицей вещества является . В центре атома находится ядро, которое в свою очередь состоит из протонов и нейтронов. Протоны обладают энергией, которую принято называть положительной. Нейтрона не обладают зарядом и остаются нейтрально заряженными. Вокруг ядра вращаются , которые имеют отрицательный заряд. Количество электронов равно количеству протонов, поэтому атом в сумме имеет нейтральный заряд. Однако в некоторых ситуациях атом может получать дополнительные электроны или терять их. В этом случае он становится положительно или отрицательно заряженным и тогда он будет называться .

Электрический заряд (ион) помещенный рядом с одним или несколькими другими будет испытывать электрические силы. Один из основных законов электричества состоит в притяжении разно заряженных зарядов и отталкивании одноименно заряженных зарядов. Область пространства, в котором заряды взаимодействуют друг с другом называют . Обычно электрическое поле изображается в виде линий, которые носят название силовых . Эта линия показывает направление, по которому следовал бы положительный заряд к отрицательному.

Когда , которые образуют какой-либо материальный объект теряют свои электроны, объект становится отрицательно заряженным. В этом случае он будет отталкиваться от отрицательно заряженных объектов и притягиваться к положительно заряженным.
Существует термин «статическое электричество», которое возникает, когда объект имеет положительный или отрицательный заряд, но не втекают и не вытекают из него. Если такой объект прикоснется к другому объекту, который нейтрально заряжен, либо положительно заряжен, то он потеряет часть или весь свой заряд.
Электрический ток возникает, когда есть поток электрически заряженных . В качестве таких частиц чаще всего выступают электроны. Некоторые электрические токи состоят из отрицательных и положительных ионов. По всеобщему соглашению направлением электрического тока называется направление, противоположное движению электронов. обладает энергией, которая может быть преобразована в тепловую, световую или другой вид энергии.
Электрический ток в металлическом проводнике представляет собой движение от отрицательного полюса к положительному. В повседневно используемых электрических устройствах протекают миллиарды и миллиарды электронов каждую секунду. Однако отдельные электроны преодолевают расстояние со скоростью лишь около 14 см в час. Основная их сила в их числе!
Существую два основных вида тока: постоянный и переменный. Постоянный ток течет в одном постоянном направлении. Переменный ток течет попеременно в каждую сторону. В бытовой электрической сети течет переменный ток и направление его движения меняется 50 раз в секунду.
Переменный ток обладает рядом преимуществ: его параметры могут быть легко изменены, т.е. его легко трансформировать. Кроме того, устройства для переменного тока сделать и спроектировать гораздо проще, чем для постоянного. В тоже время постоянный проще хранить, поэтому те устройства которые питаются от батареек и аккумуляторов работают преимущественно на постоянном токе.
по некоторым материалам течет более легко, чем по другим. Другими словами разные материалы обладают разным электрическим сопротивлением. Материалы с небольшим сопротивлением называются проводниками. Практически все металлы являются проводниками, так как их легко теряют и принимают . , которые также обладают низким сопротивлением, называют электролитами.
Наряду с проводниками существуют диэлектрики, которые имеют высокое электрическое сопротивление. К ним относятся резина, бумага, древесина и мн. др. Несмотря на то что диэлектрики плохо проводят ток, они также широко используются в электрической технике. Например диэлектрики используются для изоляции проводов.
Материалы с сопротивлением между проводниками и диэлектриками называются полупроводниками. Они широко используются при построении электронных схем.

В четверг 14 февраля 2019 года в России отмечают замечательный праздник - День всех влюбленных. Государственные лотереи не могут остаться в стороне от столь яркого события, и проводят специально посвященный Дню всех влюбленных праздничный розыгрыш под номером 1271 .

В связи с этим хочется пожелать: влюбленные - любите, любящие - храните, купившие билет Русского лото - выигрывайте!

Днем выхода передачи в эфир на канале "НТВ" традиционно является воскресенье. Начиная с октября 17 года, трансляция начинается в 14:00 по московскому времени.

Трансляция 1271 тиража Русского лото по телевизору, посвященная Дню влюбленных, также будет проходить в воскресенье 17 февраля 2019 года, начиная с 14:00 мск на телеканале "НТВ" .

Что будет разыгрываться 17 февраля 2019 года:

В 1271 тираже Всероссийская гос. лотерея разыграет множество вещевых и денежных призов, 100 романтических путешествий и Джекпот в размере 500 миллионов рублей .

Как выглядит билет:

Билет тиража 1271 имеет розовую окантовку. На фоне голубого неба летит воздушный шар в виде сердца, слева от него размещена надпись "С Днём всех влюблённых!", а ниже - "Джекпот 500 000 000 руб." Слева снизу написано "1271 тираж". Внизу на белом фоне имеется надпись "100 романтических путешествий".

Напомним, что короткий день в пятницу 22.02.2019 будет единственным "подарком" российскии защитникам в плане отдыха, т.к. выходной день с субботы переносится не на ближайший понедельник, а на пятницу 10 мая 2019 года.

Вырастить хорошую рассаду помидоров в 2019 году на подоконнике в квартире - это целое искусство. Знание сроков своевременной посадки семян, пикировки рассады и соблюдение правил ухода за ней дают в результате крепкие и здоровые растения. Опытные огородники советуют также не пренебрегать календарем фаз луны, которые, по их мнению, оказывают огромное влияние на развитие томатов. Ниже рассказываем о том, когда сажать помидоры в 2019 году на рассаду и в грунт с учетом лунного календаря.


Даты посева семян томатов на рассаду в 2019 году:

В 2019 году лучшие сроки посадки семян на рассаду в домашних условиях для средней полосы России наступают спустя сутки после новолуния 6 марта 2019 г . Однако, наиболее благоприятными являются дни с 10 по 12 марта 2019 года, а также 15 и 16 марта 2019 года . Поздние сроки посева рассады помидор 2019 наступают после полнолуния 21 марта 2019 г . На убывающей луне оптимальными днями будут 23 и 24 марта 2019 года .

Напомним, что семена перед посадкой следует продезинфицировать (например, в 1% растворе марганцовки), а затем хорошо промыть. Советуем для повышения будущего урожая замочить семена на сутки в слабом растворе борной кислоты (0,1 г на 0,5 л воды). Сеют обсушенные семена в мелкие (7-8 см.) лоточки с землей на глубину не более 1-1,5 см., поливают и закрывают пленкой. Температура прорастания семян +22-25 град., поэтому их держат подальше от холодного подоконника. Как только покажутся первые всходы, пленку снимают и лотки выставляют на подоконник. Поливать рассаду следует только теплой (+20+-22 град.) водой.

Даты пикировка рассады томатов в 2019 году:

Когда между семядольными листиками появляется первый настоящий резной лист, сеянцы можно пикировать в отдельные горшочки или в ящики с землей высотой 12-15 см. В любом случае, расстояние между соседними растениями должно быть 10-12 см. При этом ростки заглубляют в землю по самые семядоли.

В марте 2019 г. - с 23 по 27 марта ; в апреле 2019 г. - 2, 3, 7, 8, 11, 12, 16, 17 апреля . 5 апреля 2019 новолуние, поэтому пикировка на растущей луне с 7 по 17 апреля 2019 года наиболее предпочтительна.

Сроки ухода за рассадой томатов в 2019 году (полив, подкормка, закалка):

Чтобы рассада помидор не вытягивалась, нужно обеспечить ей достаточно света и снизить температуру воздуха днем от +18 до 24 град., а ночью от +12 до 16 град.

Необходимо также вносить подкормки . Первую подкормку дают через 7-10 дней после пикировки, когда растение образует новые корни, и далее через каждые 8-12 дней. Для подкормки в воде для полива растворяют минеральные удобрения или древесную золу.

В апреле 2019 наилучшими для подкормки будут любые дни с 7 по 18, с 20 по 26, 29 и 30 апреля . В мае 2019 подкармливать можно с 1 по 4, с 7 по 18, 21-23, 26-31 мая .

За 15-20 дней до высадки в грунт рассаду нужно закалять . Лучше всего вынести ее на лоджию или балкон, открыть окно.

В течение последней декады до посадки рассада помидор сильно вытягивается, особенно если стоит теплая погода. Задержать рост можно прекращением полива, а поливать только при подвядании листьев в середине дня.

Сроки высадки рассады помидор 2019 в грунт:

Рассаду томатов высаживают в грунт в возрасте 60-70 дней от всходов , когда температура воздуха ночью превышает +12 град. За один-два дня до посадки растения нужно хорошо полить водой с подкормкой, чтобы обеспечить сохранение корней и питание растений после высадки в грунт.

В мае 2019 рассаду можно высаживать под дуги с укрывным материалом уже 17-18 мая на растущей луне . Напомним, что 19 мая 2019 года - полнолуние, и работы лучше прервать. Лучшими днями в мае 2019 на убывающей луне будут 26-28 и 31 мая . В июне 2019 уже можно сажать в открытый грунт 1 и 2, 5 и 6 июня . 3 июня 2019 новолуние и деятельность в огороде нежелательна.

Напомним оптимальные сроки посадки и ухода за помидорной рассадой в 2019 году:
* посев семян - с 10 по 12, 15 и 16, 23 и 24 марта 2019 г.;
* пикировка рассады - с 23 по 27 марта; 2 ,3, 7, 8, 11, 12, 16, 17 апреля 2019 г.;
* подкормки рассады каждые 8-12 дней - с 7 по 18, с 20 по 26, 29 и 30 апреля, с 1 по 4, с 7 по 18, 21-23, 26-31 мая 2019 г.;
* высадка рассады в грунт - 17, 18, 26-28, 31 мая, 1, 2, 5, 6 июня 2019 г.

Также читаем:
*

Дата Песаха привязана к лунно-солнечному еврейскому календарю, и поэтому по календарю григорианскому число празднования ежегодно меняется. Начинается еврейская Пасха 2019 года с наступлением сумерек 14 дня весеннего месяца нисан (с вечера 19 апреля 2019 года ), и длится 7 дней в Израиле - с 15 по 21 нисана (с 20 апреля 2019 года по 26 апреля 2019 года ), и 8 дней за его пределами, в том числе в России - по 22 нисана (по 27 апреля 2019 года).

Согласно древней традиции, каждый иудейский праздник начинается накануне вечером, после захода солнца. Поэтому праздновать Песах 2019 также начинают вечером 19 апреля 2019 года с праздничного седара (ночной пасхальной трапезы). А сам день 14 нисана также называют Днём подготовки к празднику.

Таким образом, дата еврейской Пасхи в 2019 году будет следующая:
* Начало - 19 апреля 2019 г. (вечером, с наступлением сумерек).
* Первый день - 20 апреля 2019 г.
* Последний день - 26 апреля 2019 г. в Израиле (27 апреля 2019 г. вне Израиля).

Также читаем:

В первый и последний день Песаха 2019 запрещено работать, поэтому 15 нисана (20 апреля 2019 года) и 21 нисана (26 апреля 2019 года) объявлены в Израиле нерабочими днями. Кроме того 20 апреля в 2019 году выпадает на субботу - нерабочий день при пятидневной рабочей неделе в ряде стран, в том числе и в России.

Одной из традиций праздника Песах является употребление в пищу "плоского пресного хлеба" - мацы. Объясняется эта традиция тем, что когда фараон освободил израильтян от рабства, они покидали Египет в спешке, при которой не могли ждать когда поднимется хлебное тесто на дрожжах. Поэтому во время еврейской Пасхи не едят заквашенного хлеба.

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.


Warning : strtotime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in on line 56

Warning : date(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 198

Каждый из нас ещё из школьного курса помнит, что электрический ток – направленное движение электрических частиц под воздействием электрического поля. Такими частицами могут быть электроны, ионы и т. д. Тем не менее, несмотря на простую формулировку, многие признаются, что не до конца знают, что же такое электричество, из чего оно состоит, как и, вообще, почему работает вся электротехника.

Для начала стоит обратиться к истории этого вопроса. Впервые термин «электричество» появился ещё в 1600 году в сочинениях английского естествоиспытателя Уильяма Гилберта. Он изучал магнитные свойства тел, в своих сочинениях затрагивая магнитные полюса нашей планеты, описывал несколько опытов с наэлектризованными телами, которые сам провёл.

Об этом можно прочитать в его труде «О магните, магнитных телах и о большом магните - Земле». Главным выводом его работы был такой, что многие тела и вещества могут наэлектризоваться, из-за чего у них появляются магнитные свойства. Его исследования применялись при создании компасов и во многих других областях.

Но Ульям Гилберт отнюдь не является первым, кто обнаружил подобные свойства тел, он просто первый, кто стал изучать их. Ещё в 7 веке до нашей эры греческий философ Фалес заметил, что янтарь, потёртый о шерсть, приобретает удивительные свойства – он начинает притягивать к себе предметы. Знания об электричестве ещё на протяжении нескольких веков так и оставались на этом уровне.

Такое положение оставалось вплоть до 17-18 веков. Это время можно назвать рассветом науки об электричестве. Ульям Гилберт был первым, после него этим вопросом занимались множество других учёных со всего мира: Франклин, Кулон, Гальвани, Вольт, Фарадей, Ампер, а также, русский учёный Василий Петров, открывший в 1802 году вольтову дугу.

Все эти учёные сделали выдающиеся открытия в области электричества, которые положили основу для последующего изучения этого вопроса. С тех пор электричество перестало быть чем-то загадочным, но, несмотря на большие достижения в этом вопросе, загадок и неясностей оставалось ещё очень много.

Самым главным вопросов, как и всегда, был: как же использовать все эти достижения на благо человечества? Потому что, несмотря на значительные успехи в области изучения природы электричества, до внедрения его в жизнь было ещё далеко. Оно всё ещё казалось чем-то загадочным и недостижимым.

Это можно сравнить с тем, как сейчас учёные всего мира изучают космос и ближайшую планету Марс. Уже получено множество сведений, установлено, что до него можно долететь и даже высадиться на поверхность и прочее, но до реального достижения подобных целей пока ещё очень много работы.

Говоря о природе электричества, нельзя не упомянуть о самом главном проявлении его в природе. Ведь именно там человек столкнулся с ним впервые, именно в природе он начал его изучать и старался понять, и делал первые попытки приручить и извлечь пользу для себя.

Конечно, когда мы говорим о природном проявлении электричества, то каждому на ум приходят молнии. Хотя сначала ещё было не понятно, что они собой представляют, а их электрическая природа была установлена только в 18 веке, когда началось активное изучение этого феномена в совокупности с ранее полученными знаниями. Кстати, по одной из версий, именно молнии повлияли на появления жизни на Земле, потому что без них бы не начался бы синтез аминокислот.

Внутри тела человека также есть электричество, без него бы не работала нервная система, а нервный импульс возникает в результате кратковременного напряжения. В океанах и морях живёт множество рыб, которые используют электричество для охоты и защиты. К примеру, электрический угорь может достигать напряжения до 500 Вольт, а у ската мощность разрядов составляет примерно 0,5 киловатт.

Некоторые виды рыб создают вокруг себя легкое электрическое поле, которое искажается от всех предметов в воде, так они могут с лёгкостью ориентироваться даже в очень мутной воде и имеют преимущества перед другими рыбами.

Так что с древних времён электричество часто встречалось в природе, без него невозможно было бы появление человека, а многие животные используют его для нахождения пропитания. Впервые человек столкнулся с этими явлениями именно в природном проявлении, это и подталкивало его на дальнейшие изучения.

Практическое применение электричества

Со временем человек продолжал накапливать знания об этом удивительном феномене. Электричество нехотя раскрывало свои тайны перед ним. Примерно с середины 19 века электричество начало проникать в жизнь человеческой цивилизации. В первую очередь оно стало использоваться для освещения, когда была изобретена лампочка. С его помощью стали передавать информацию на большие расстояния: появилось радио, телевидение, телеграф и т.д.

Но отдельное внимание заслуживает появление различных механизмов и устройств, которые приводились в движение с помощью электричества. И по сей день трудно представить работу какого-либо прибора или машины без электричества. Вся бытовая техника в современном доме работает только на электричестве.

Большим прорывом были и достижения в области добывания электричества, так начали создаваться всё более мощные электростанции, генераторы; для хранения были придуманы аккумуляторные батареи.

Электричество помогло сделать множество других открытий, оно помогает в науке и при исследовании новых вопросов. Некоторые технологии работают на основе электрических свойств, они используются в медицине, промышленности и, конечно, в быту.

Так что же такое электричество?

Как бы странно это не звучало, но повсеместное использование электричества не делает его более понятным. Все знают основные принципы работы, техники безопасности и всё. Одни люди признаются, что вообще не представляют, что такое электричество, другие не знают, почему оно работает именно так, а не иначе, третьи не понимают разницы между напряжением, мощностью и сопротивлением и подобных примеров множество.

Проще всего понять природу электричества на молекулярном уровне. Все вещества состоят из молекул, все молекулы состоят из атомов, а каждый атом же, состоит из ядра, вокруг которого вращаются электроны.

Электроны и являются «переносчиками» электричества, а электрический ток – это непрерывное перемещение большого количества таких электронов.

Электротехника достигла больших успехов за время своего развития, однако, по-прежнему изучение её природы требует больших усилий, ведь многие задачи до сих пор остаются нерешёнными или те решения, которые найдены, не столь эффективны, как могли бы быть. В основе всего лежит превращение сил. Электрическую энергию сегодня можно легко преобразовать в световую, используя для освещения, с её помощью можно двигать различные механизмы и прочее.

Другой особенностью и главным преимуществом электрической перед другими видами энергии является её распространённость, неограниченность в пространстве. Электричество непрерывно сопровождает человека во всех сферах его жизни, считается примером эволюции и взглядов в будущее, а процесс развития техники непрерывно связан с развитием науки и новыми достижениями.

Это расширяет возможности человека, совершенствует его инструменты и гарантирует ему постоянное развитие и движение вперёд в будущее, а многие задачи со временем уже перестают казаться невыполнимыми.


Warning : strftime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 250

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком. Оно помогало развиваться нашей цивилизации с самого начала своего появления....

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком . Оно помогало развиваться нашей цивилизации с самого начала своего появления. Это самый экологический вид энергии на планете, и вероятно, что именно электричество сможет заменить все сырьевые ресурсы, если оных более не останется на Земле.

Термин пошел от греч. «электрон», и означает «янтарь». Ещё в VII веке до нашей эры древнегреческий философ Фалес заметил, что янтарь имеет свойство притягивать к себе волосы и легкие материалы, например, пробковую стружку. Таким образом, он стал первооткрывателем электричества . Но только лишь к средине XVII века наблюдения Фалеса были подробно изучены Отто фон Герике. Этот немецкий физик создал первый в мире электроприбор. Это был вращающийся шар из серы, зафиксированный на металлическом штифте и был похож на янтарь имеющий силу притяжения и отталкивания.

Фалес — первооткрыватель электричества

За пару столетий «электрическую машину» Герике заметно усовершенствовали такие немецкие ученые, как Бозе, Винклер, а также англичанин Хоксби. Эксперименты с электрической машиной дали толчок к новым открытиям в XVIII столетии : в 1707 году физик дю Фей родом из Франции, выявил разницу между электричеством, которое мы получаем от трения стеклянного круга, и которое мы получаем от трения круга из древесной смолы. В 1729 году английские ученые Грей и Уилер выявили, что некоторые тела могут пропускать через себя электричество, и они были первыми, кто сделал акцент на том, что тела можно разделять на два типа: проводники и непроводники электричества.

Очень значительное открытие было изложено в 1729 году голландским физиком Мушенбруком, который родился в Лейдене. Этот профессор философии и математики был первым, кто выявил, что стеклянная банка, залепленная с двух сторон листками станиоля, может скапливать электричество. Так как опыты проводились в городе Лейдене, прибор так и назвали – лейденская банка .

Ученый и общественный деятель Бенджамин Франклин привел одну теорию в которой он говорил, что существует как положительное, так и отрицательное электричество. Ученый смог объяснить сам процесс заряда и разряда стеклянной банки и привел доказательства того, что обкладки лейденской банки можно непринужденно электризовать разными зарядами электричества.

Бенджамин Франклин, более чем достаточно уделил внимания познанию атмосферного электричества, как и русские ученые Г. Рихман, а также М.В. Ломоносов. Ученый изобрел громоотвод , с помощью которого обосновал, что сама молния возникает от разности электрических потенциалов.

В 1785 году был выведен закон Кулона, который описывал между точечными зарядами электрическое взаимодействие. Закон был открыт Ш. Кулоном ученым из Франции, который создал его на основе многократных экспериментов со стальными шариками.

Одним из великих открытий, которое обнаружил итальянский ученый Луиджи Гальвани в 1791 году, было то, что электричество могло появляться при соприкосновении двух неоднородных металлов с телом препарированной лягушки.

В 1800 году итальянский ученый Алессандро Вольта изобрел химическую батарею. Это открытие было важным в изучении электричества . Этот гальванический элемент состоял из серебряных пластинок круглой формы, между пластинками были смоченные предварительно в соленой воде куски бумаги. Благодаря химическим реакциям химическая батарея регулярно получала электрический ток.

В 1831 году известный ученый Майкл Фарадей обнаружил электромагнитную индукцию и на этом базисе изобрел первый в мире электрогенератор. Открыл такие понятия, как магнитное и электрическое поле и изобрел элементарный электродвигатель .

Человек, который вложил огромный вклад в изучение магнетизма и электричества, и применял свои исследования на практике, был изобретатель Никола Тесла. Бытовые и электроприборы, которые создал ученый – незаменимы. Этого человека можно назвать одним из великих изобретателей XX ст.

Кто первым открыл электричество?

Отыскать людей, которые не знали бы, что такое электроэнергия, сложно. А вот кто открыл электричество? Об этом имеет представление далеко не каждый. Нужно разобраться, что же это за явление, кто первым его открыл и в каком году все произошло.

Пара слов об электричестве и его открытии

История открытия электричества довольно обширна. Впервые это произошло в далеком 700 году до н.э. Пытливый философ из Греции по имени Фалес обратил внимание, что янтарь способен притягивать маленькие предметы, когда происходит трение с шерстью. Правда, после этого все наблюдения на долгое время закончились. Но именно он считается первооткрывателем статического электричества.

Дальнейшее развитие произошло значительно позднее — через несколько веков. Врач Уильям Гильберт, которому были интересны основы физики, стал основоположником науки об электричестве. Он изобрел нечто похожее на электроскоп, назвав его версор. Благодаря ему Гильберт понял, что множество минералов притягивают маленькие предметы. Среди них алмазы, стекло, опалы, аметисты и сапфиры.

При помощи версора Гильберт сделал пару любопытных наблюдений:

  • пламя влияет на электрические свойства тел, возникающие при трении;
  • молния с громом — это явления электрической природы.

Слово «электричество» появилось в 16 столетии. В 60-х годах XVII века бургомистр Отто фон Герике создал специальную машину для опытов. Благодаря ей он наблюдал за эффектами притяжения и отталкивания.

После этого исследования продолжились. Использовали даже электростатические машины. В начале 30-х годов XVIII века Стивен Грей преобразовал конструкцию Герике. Он поменял серный шарик на стеклянный. Стивен продолжил эксперименты и обнаружил такое явление, как электропроводность. Несколько позднее Шарль Дюфе обнаружил два вида зарядов — от смол и стекла.

В 40-м году XVIII века Клейст и Мушенбрук придумали «лейденскую банку», ставшую первым конденсатором на Земле. Бенджамин Франклин говорил, что заряд накапливает стекло. Благодаря ему появились обозначения «плюс» и «минус» для электрических зарядов, а также «проводник», «заряд» и «конденсатор».

Бенджамин Франклин вел насыщенную событиями жизнь. Удивительно то, что у него вообще хватало времени на изучение электричества. Однако именно Бенджамин Франклин изобрел первый громоотвод.

В конце XVIII столетия Гальвани выпустил «Трактат о силе электричества при движении мышц». В начале XIX века изобретатель из Италии Вольта придумал новейший источник тока, назвав его Гальванический элемент. Эта конструкция выглядит как столб из серебряных и цинковых колец. Они разделены бумагами, которые смочили в соленой воде. Так и произошло открытие гальванического электричества. Через 2 года изобретатель из России Василий Петров открыл Вольтову дугу.

Примерно в тот же временной период Жан Антуан Нолле сконструировал электроскоп. Он зарегистрировал быстрое «стекание» электричества с тел острой формы. На основе этого появилась теория о том, что ток влияет на живые существа. Благодаря обнаруженному эффекту появился медицинский электрокардиограф.

С 1809 году в сфере электричества случилась революция. Изобретатель из Англии Деларю придумал лампочку накаливания. Спустя век были созданы приборы с вольфрамовой спиралью, которые заполняли инертным газом. Ирвинг Ленгмюр стал их основоположником.

Прочие открытия

В XVIII столетии знаменитый в дальнейшем Майкл Фарадей придумал учение об электромагнитных полях.

Электромагнитное взаимодействие обнаружил во время своих экспериментов ученый из Дании по имени Эрстед в 1820 году. В 1821 году физик Ампер в собственном трактате связал электричество и магнетизм. Благодаря этим исследованиям зародилась электротехника.

В 1826 году Георг Симон Ом провел опыты и обозначил главный закон электрической цепи. После этого возникли специализированные термины:

  • электродвижущая сила;
  • проводимость;
  • падение напряжения в сети.

Андре-Мари Ампер позднее придумал правило, как определять направление тока на магнитную стрелку. У него было множество названий, но больше всего прижилось «правило правой руки». Именно Ампер сконструировал усилитель электромагнитного поля — катушки с множеством витков. Они сделаны из медных проводов, в которых с установлены железные сердечники. В 30-х годах XIX века был изобретен электромагнитный телеграф на основании вышеописанного правила.

В 20-х годах XX века в Советском Союзе правительство начало глобальную электрификацию. В этот период возник термин «лампочка Ильича».

Волшебное электричество

Дети должны знать, что такое электричество. Но обучать нужно в игровой форме, чтобы полученные знания не наскучили в первые же минуты. Для этого можно посетить открытое занятие «Волшебное электричество». В него входят следующие образовательные задачи:

  • обобщение у детей информации про электричество;
  • расширить знания о том, где обитает электричество и чем оно может помочь людям;
  • познакомить ребенка с причинами возникновения статического электричества;
  • объяснить правила безопасности в обращении с бытовыми электроприборами.

Также ставятся и иные задачи:

  • у ребенка формируется желание открывать что-то новое;
  • дети учатся взаимодействовать с окружающим миром и его объектами;
  • развивается мышление, наблюдение, способности к анализу и умение делать правильные выводы;
  • осуществляется активная подготовка к школе.

Занятие необходимо и в воспитательных целях. Во время его проведения:

  • подкрепляется интерес к изучению окружающего мира;
  • появляется удовлетворение от открытий, которые получились в результате проведенных экспериментов;
  • воспитывается умение работать в коллективе.

В качестве материала предоставляются:

  • игрушки с батарейками;
  • пластмассовые палочки по числу присутствующих;
  • шерстяная и шелковая ткани;
  • обучающая игрушка «Собери предмет»;
  • карточки «Правила по использованию бытовых электроприборов»;
  • цветные шарики.

Для ребенка это будет отличным занятием на лето.

Заключение

Мы не можем точно утверждать, кто на самом деле первым открыл электричество. Есть все основания полагать, что о нем знали еще до Фалеса. Но большинство ученых (Уильям Гилберт, Отто фон Герике, Вольт Ом, Ампер) в полной мере внесли собственный вклад в развитие электричества.

Альтернативная версия истории открытия электричества

Науке не известно, когда произошло открытие электричества. Еще древние люди наблюдали молнии. Позже они заметили, что некоторые тела, если их потереть друг о друга, могут притягиваться или отталкиваться. Свойство притягивать или отталкивать небольшие предметы хорошо проявлялось у янтаря.
В 1600 г. появился первый термин, связанный с электричеством, — электрон. Ввел его Уильям Гилберт, заимствовавший это слово из греческого языка, где оно обозначало янтарь. Позже такие свойства были обнаружены у алмаза, опала, аметиста, сапфира. Эти материалы он назвал электриками, а само явление — электричеством.
Отто фон Герике продолжил исследования Гилберта. Он изобрел электростатическую машину — первый прибор для изучения электрических явлений. Она представляла собой вращающийся металлический стержень с шаром, сделанным из серы. При вращении шар терся о шерсть и приобретал значительный заряд статического электричества.

В 1729 г. англичанин Стивен Грей усовершенствовал машину Герике, заменив в ней серный шар на стеклянный.

В 1745 г. Юрген Клейст и Питер Мушенбрук изобрели лейденскую банку, представляющую собой стеклянную емкость с водой, способную накопить значительный заряд. Она стала прототипом современных конденсаторов. Ученые ошибочно полагали, что накопителем заряда является вода, а не стекло. Позже вместо воды стали использовать ртуть.
Бенджамин Франклин расширил набор терминов для описания электрических явлений. Он ввел понятия: заряд, два рода зарядов, плюс и минус для их обозначения. Ему принадлежат термины конденсатор, проводник.
Множество проведенных в 17 веке экспериментов носило описательный характер. Практического применения они не получили, но послужили фундаментом для развития теоретических и практических основ электричества.

Первые научные эксперименты с электричеством

Научные исследования электричества начались в 18 веке.

В 1791 г. итальянский врач Луиджи Гальвани обнаружил, что ток, протекающий по мышцам препарированных лягушек, вызывает их сокращение. Свое открытие он назвал животным электричеством. Но Луиджи Гальвани не смог полностью объяснить полученные результаты.

Открытие животного электричества заинтересовало итальянца Александро Вольта. Известный ученый повторил опыты Гальвани. Он повторно доказал, что живые клетки вырабатывают электрический потенциал, но причина его появления химическая, а не животная. Так произошло открытие гальванического электричества.
Продолжая свои опыты, Александро Вольта сконструировал устройство, вырабатывающее напряжение без электростатической машины. Это была стопка чередующихся медных и цинковых пластин, разделенных смоченными в растворе соли кусочками бумаги. Устройство получило название вольтового столба. Оно стало прототипом современных гальванических элементов, служащих для выработки электроэнергии.
Важно отметить, что Наполеон Бонапарт очень заинтересовался изобретением Вольта, и в 1801 г. пожаловал ему титул графа. А позже знаменитые физики решили в его честь назвать единицу измерения напряжения 1 В (вольт).

Луиджи Гальвани и Александро Вольта — великие экспериментаторы в области электричества. Но в 18 в. объяснить суть явлений они не могли. Построение теории электричества и магнетизма началось в 19 в.

Научные исследования электричества в 19 веке

Русский изобретатель Василий Петров, продолжая эксперименты Вольта, в 1802 г. открыл вольтову дугу. В его опытах использовались угольные электроды, которые вначале сдвигались, за счет протекания тока раскалялись, а затем раздвигались. Между ними возникала устойчивая дуга, способная гореть при напряжении всего в 40-50 вольт. При этом выделялось значительное количество тепла. Опыты Петрова впервые показали возможности практического применения электричества, способствовали изобретению лампы накаливания и электросварки. Для своих опытов В. Петров сконструировал батарею длиною 12 м. Она была способна создать напряжение 1700 вольт.

Недостатками вольтовой дуги были быстрое сгорание углей, выделение углекислого газа и копоти. За усовершенствование источника света взялись несколько величайших изобретателей того времени, каждый из которых внес свой вклад в развитие электрического освещения. Все они считали, что источник тепла и света должен находиться в стеклянной колбе, из которой выкачан воздух.
Идею использования металлической нити накаливания еще в 1809 г. предложил английский физик Деларю. Но в течение многих лет продолжались эксперименты с угольными стержнями и нитями.
В американских учебниках по электричеству утверждается, что отцом лампы накаливания является их соотечественник Томас Эдисон. Он внес огромный вклад в историю открытия электричества. Но опыты Эдисона по усовершенствованию ламп накаливания закончились в конце 1870-х гг., когда он отказался от металлической нити накала и вернулся к угольным стержням. Его лампы могли бесперебойно гореть около 40 часов.

Спустя 20 лет русский изобретатель Александр Николаевич Лодыгин изобрел лампу, в которой использовалась проволочная нить накала из тугоплавкого металла, скрученная в спираль. Из колбы был выкачан воздух, из-за которого происходило окисление нити и ее перегорание.
Крупнейшая компания мира по производству электротехнической продукции General Electric выкупила у Лодыгина патент на производство ламп с вольфрамовой нитью. Это позволяет считать, что отцом лампы накаливания является наш соотечественник.
Над усовершенствованием лампы накаливания работали химики и физики, и их открытия, изобретения и усовершенствования позволили создать лампу накаливания, которой люди пользуются сегодня.

В 19 в. электричество стало применяться не только для освещения.
В 1807 г. английскому химику Хэмфри Дэви электролитическим способом удалось выделить из раствора щелочные металлы натрий и калий. Других способов получения этих металлов в то время не было.
Его соотечественник Уильям Стэрджен в 1825 г. изобрел электромагнит. Продолжая исследования, он создал первую модель электродвигателя, работу которого продемонстрировал в 1832 г.

Становление теоретических основ электричества

Кроме изобретений, получивших практическое применение, в 19 в. началось построение теоретических основ электричества, открытие и формулировка основных законов.

В 1826 г. немецкий физик, математик, философ Георг Ом экспериментально установил и теоретически обосновал свой знаменитый закон, описывающий зависимость тока в проводнике от его сопротивления и напряжения. Ом расширил набор терминов, используемых в электричестве. Он ввел понятия электродвижущей силы, проводимости, падения напряжения.
Благодаря нашумевшим в научном мире публикациям Г. Ома, теория электричества стала бурно развиваться, но сам автор подвергся гонениям со стороны начальства и был уволен с должности школьного учителя математики.

Огромный вклад в развитие теории электричества внес французский философ, биолог, математик, химик Андре-Мари Ампер. По причине бедности родителей он вынужден был заниматься самообразованием. В возрасте 13 лет он уже овладел интегральным и дифференциальным исчислением. Это позволило ему получить математические уравнения, описывающие взаимодействия круговых токов. Благодаря трудам Ампера в электричестве появились 2 смежные области: электродинамика и электростатика. По неизвестным причинам Ампер в зрелом возрасте перестал заниматься электричеством и увлекся биологией.

Над развитием теории электричества трудились многие физики разных национальностей. Изучив их труды, выдающийся английский физик Джеймс-Клерк Максвелл построил единую теорию электрических и магнитных взаимодействий. Электродинамика Максвелла предусматривает наличие особой формы материи — электромагнитного поля. Свой труд, посвященной этой проблеме, он опубликовал в 1862 г. Теория Максвелла позволила описать уже известные электромагнитные явления и предсказать неизвестные.

История развития электрических средств связи

Как только у древних людей возникла потребность в общении, появилась необходимость в организации обмена сообщениями. История развития средств связи до открытия электричества многогранна и у каждого народа своя.

Когда люди оценили возможности электричества, встал вопрос о передаче информации с его помощью.
Первые попытки передачи электрических сигналов были предприняты сразу после опытов Гальвани. Источником энергии служил вольтов столб, приемником — лягушечьи лапки. Так появился первый телеграф, который долгое время усовершенствовался и модернизировался.

Для передачи информации ее сначала нужно было кодировать, а после приема раскодировать. Для кодирования информации американский художник Самюэл Морзе в 1838 г. придумал специальную азбуку, состоящую из комбинаций точек и тире, разделенных промежутками. Известна точная дата первой телеграфной передачи — 27 мая 1844 г. Связь была установлена между Балтимором и Вашингтоном, расположенных на расстоянии 64 км.

Средства связи такого рода умели передавать сообщения на большие расстояния, сохранять их на бумажной ленте, но имели и ряд недостатков. На кодирование и декодирование сообщений тратилось много времени, приемник и передатчик должны были обязательно соединяться проводами.

В 1895 г. русскому изобретателю Александру Попову удалось продемонстрировать работу первого беспроводного передатчика и приемника. В качестве приемного элемента использовалась антенна (или вибратор Герца), а в качестве регистрирующего элемента — когерер. Для питания прибора использовалась батарея постоянного тока с напряжением в несколько вольт.
В изобретении когерера велика заслуга французского физика Эдварта Бранли, открывшего возможность изменять сопротивление металлического порошка за счет воздействия на него электромагнитных волн.
Средства связи, построенные на основе передатчика и приемника Попова, служат и в настоящее время.

Сенсационное сообщение о своих открытиях в области передачи электромагнитных волн в 1891 г. сделал сербский ученый Никола Тесла. Но человечество не было готово принять его идеи и понять, как на практике применить изобретения Тесла. Через много десятилетий они легли в основу сегодняшних средств электронных коммуникаций: радио, телевидения, сотовой и космической связи.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?