Подпишись и читай
самые интересные
статьи первым!

Формула определения потока магнитной индукции. Природа магнетизма: магнитный поток, определение, свойства, общая характеристика

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Определение магнитного потока :

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

здесь α - угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с. Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.

Магнитный поток является скалярной величиной.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

4.1. Закон электромагнитной индукции. Самоиндукция. Индуктивность

Основные формулы

· Закон электромагнитной индукции (закон Фарадея):

, (39)

где – эдс индукции;– полный магнитный поток (потокосцепление).

· Магнитный поток, создаваемый током в контуре,

где – индуктивность контура;– сила тока.

· Закон Фарадея применительно к самоиндукции

· Эдс индукции, возникающая при вращении рамки с током в магнитном поле,

где – индукция магнитного поля;– площадь рамки;– угловая скорость вращения.

· Индуктивность соленоида

, (43)

где – магнитная постоянная;– магнитная проницаемость вещества;– число витков соленоида;– площадь сечения витка;– длина соленоида.

· Сила тока при размыкании цепи

где – установившаяся в цепи сила тока;– индуктивность контура,– сопротивление контура;– время размыкания.

· Сила тока при замыкании цепи

. (45)

· Время релаксации

Примеры решения задач

Пример 1.

Магнитное поле изменяется по закону , где= 15 мТл,. В магнитное поле помещен круговой проводящий виток радиусом = 20 см под угломк направлению поля (в начальный момент времени). Найти эдс индукции, возникающую в витке в момент времени= 5 с.

Решение

По закону электромагнитной индукции возникающая в витке эдс индукции , где– магнитный поток, сцепленный в витке.

где – площадь витка,;– угол между направлением вектора магнитной индукциии нормалью к контуру:.

Подставим числовые значения: = 15 мТл,,= 20 см = = 0,2 м,.

Вычисления дают .

Пример 2

В однородном магнитном поле с индукцией = 0,2 Тл расположена прямоугольная рамка, подвижная сторона которой длиной= 0,2 м перемещается со скоростью= 25 м/с перпендикулярно линиям индукции поля (рис. 42). Определить эдс индукции, возникающую в контуре.

Решение

При движении проводника АВ в магнитном поле площадь рамки увеличивается, следовательно, возрастает магнитный поток сквозь рамку и возникает эдс индукции.

По закону Фарадея , где, тогда, но, поэтому.

Знак «–» показывает, что эдс индукции и индукционный ток направлены против часовой стрелки.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией.Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Для характеристики намагниченности вещества в магнитном поле используетсямагнитный момент (Р м ). Он численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл.

Магнитный момент единицы объема вещества характеризует его намагниченность - I , определяется по формуле:

I = Р м /V , (2.4)

где V - объем вещества.

Намагниченность в системе СИ измеряется, как и напряженность, в А/м , величина векторная.

Магнитные свойства веществ характеризуются объемной магнитной восприимчивостью - c о , величина безразмерная.

Если какое-либо тело поместить в магнитное поле с индукцией В 0 , то происходит его намагничивание. Вследствие этого тело создает свое собственное магнитное поле с индукцией В " , которое взаимодействует с намагничивающим полем.

В этом случае вектор индукции в среде (В) будет слагаться из векторов:

В = В 0 + В " (знак вектора опущен), (2.5)

где В " - индукция собственного магнитного поля намагнитившегося вещества.

Индукция собственного поля определяется магнитными свойствами вещества, которые характеризуются объемной магнитной восприимчивостью - c о , справедливо выражение:В " = c о В 0 (2.6)

Разделим на m 0 выражение (2.6):

В " / m о = c о В 0 /m 0

Получим: Н " = c о Н 0 , (2.7)

но Н " определяет намагниченность вещества I , т.е. Н " = I , тогда из (2.7):

I = c о Н 0 . (2.8)

Таким образом, если вещество находится во внешнем магнитном поле с напряженностьюН 0 , то внутри него индукция определяется выражением:

В=В 0 + В " = m 0 Н 0 +m 0 Н " = m 0 0 + I) (2.9)

Последнее выражение строго справедливо, когда сердечник (вещество) находится полностью во внешнем однородном магнитном поле (замкнутый тор, бесконечно длинный соленоид и т.д.).

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК - (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК - величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток - поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

Правило правой руки или буравчика:

Направление силовых линий магнитного поля и направление создающего его тока связаны между собой известным правилом правой руки или буравчика, которые ввел еще Д.Максвелл и иллюстрируется следующими рисунками:

Мало кто знает, что буравчик - это инструмент для бурения-сверления отверстий в дереве. Поэтому более понятно можно это правило назвать правилом винта, шурупа или штопора. Однако хвататься за провод как на рисунке иногда опасно для жизни!

Магнитная индукция B :

Магнитная индукция - является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряженности электрического поля E . Вектор магнитной индукции всегда направлен по касательной к магнитной линии и показывает ее направление и силу. За единицу магнитной индукции в B = 1Тл принимается магнитная индукция однородного поля, в котором на участок проводника длиной в l = 1 м, при силе тока в нем в I = 1 А, действует со стороны поля максимальная сила Ампера - F = 1 H. Направление силы Ампера определяется по правилу левой руки . В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ - в теслах (Тл).

Напряженность магнитного поля H :

Еще одной характеристикой магнитного поля является напряженность , которая является аналогом вектора электрического смещения D в электростатике. Определяется по формуле:

Напряженность магнитного поля - величина векторная, является количественной характеристикой магнитного поля и не зависит от магнитных свойств среды. В системе СГС напряженность магнитного поля измеряется в эрстедах (Э), в системе СИ - в амперах на метр (А/м).

Магнитный поток Ф:

Магнитный поток Ф - скалярная физическая величина, характеризующая число линий магнитной индукции, пронизывающих замкнутый контур. Рассмотрим частный случай. В однородном магнитном поле , модуль вектора индукции которого равен ∣В ∣, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции B . Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B через конечную поверхность S.

Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т.е. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС - максвелл (Мкс); 1 Вб = 10 8 Мкс.

Определение индуктивности:

Индуктивность - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Иначе, индуктивность - коэффициент пропорциональности в формуле самоиндукции .

В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.

Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки , расчету которых и посвящена программа


Если электрический ток, как показали опыты Эрстеда, создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Многие ученые с помощью опытов пытались найти ответ на этот вопрос, но первым решил эту задачу Майкл Фарадей (1791 - 1867).
В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.
Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (рис. 192),

а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (рис. 193).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией.
Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и физической величиной, называемой магнитным потоком.
Магнитный поток. Для плоского контура, расположенного в однородном магнитном поле (рис. 194), магнитным потоком Ф через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и на косинус угла между вектором и нормалью к поверхности:

Правило Ленца. Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.
Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.
Закон электромагнитной индукции. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Для однородного магнитного поля на основании уравнения (54.1) следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м 2 равен 1 Вб:

.

Вихревое электрическое поле. Закон электромагнитной индукции (54.3) по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре. Однако при этом остается нераскрытым физический смысл явления электромагнитной индукции. Рассмотрим это явление подробнее.

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.

Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри ческого заряда по замкнутой линии может быть отлична от нуля.

ЭДС индукции в движущихся проводниках. Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во времени, но магнитный поток через контур изменяется из-за движения проводников контура в магнитном поле. В этом случае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.

Для того чтобы уяснить смысл нового для нас понятия «магнитный поток», подробно разберем несколько опытов с наведением ЭДС, обращая внимание на количественную сторону производимых наблюдений.

В наших опытах будем пользоваться установкой, изображенной на рис. 2.24.

Она состоит из большой многовитковой катушки, намотанной, скажем, на трубу из плотного проклеенного картона. Питание катушки производится от аккумулятора через рубильник и регулировочный реостат. О величине тока, устанавливающегося в катушке, можно судить по амперметру (на рис. 2.24 не показан).

Внутри большой катушки может устанавливаться другая маленькая катушка, концы которой подведены к магнитоэлектрическому прибору - гальванометру.

Для наглядности рисунка часть катушки показана вырезанной - это позволяет увидеть расположение маленькой катушки.

При замыкании или размыкании рубильника в маленькой катушке наводится ЭДС и стрелка гальванометра на короткое время отбрасывается из нулевого положения.

По отклонению можно судить о том, в каком случае на веденная ЭДС больше, в каком меньше.

Рис. 2.24. Устройство, на котором можно изучать наведение ЭДС изменяющимся магнитным полем

Замечая число делений, на какое отбрасывается стрелка, можно количественно сравнивать действие, производимое наведенными ЭДС.

Первое наблюдение. Вставив внутрь большой катушки маленькую, закрепим ее и пока не будем ничего изменять в их расположении.

Включим рубильник и, меняя сопротивление реостата, включенного вслед за аккумулятором, установим определенное значение тока, например

Произведем теперь выключение рубильника, наблюдая за гальванометром. Пусть его отброс n окажется равным 5 делениям вправо:

Когда выключается ток 1 А.

Снова включим рубильник и, меняя сопротивление, увеличим ток большой катушки до 4 А.

Дадим гальванометру успокоиться, и снова выключим рубильник, наблюдая за гальванометром.

Если его отброс составлял 5 делений при выключении тока 1 А, то теперь при выключении 4 А заметим, что отброс увеличился в 4 раза:

Когда выключается ток 4 А.

Продолжая такие наблюдения, легко заключить, что отброс гальванометра, а значит, и наведенная ЭДС возрастают пропорционально росту отключаемого тока.

Но мы знаем, что изменение тока вызывает изменение магнитного поля (его индукции), поэтому правильный вывод из нашего наблюдения такой:

наводимая ЭДС пропорциональна скорости изменения магнитной индукции.

Более подробные наблюдения подтверждают правильность этого вывода.

Второе наблюдение. Продолжим наблюдение за отбросом гальванометра, производя выключение одного и того же тока, скажем, 1-4 А. Но будем изменять число витков N маленькой катушки, оставляя неизменными ее расположение и размеры.

Предположим, что отброс гальванометра

наблюдался при (100 витков на малой катушке).

Как изменится отброс гальванометра, если удвоить число витков?

Опыт показывает, что

Именно этого и следовало ожидать.

В самом деле, все витки маленькой катушки находятся под одинаковым воздействием магнитного поля, и в каждом витке должна наводиться, одинаковая ЭДС.

Обозначим ЭДС одного витка буквой Ей тогда ЭДС 100 витков, включенных последовательно один за другим, должна быть в 100 раз больше:

При 200 витках

При любом ином числе витков

Если ЭДС возрастает пропорционально числу витков, то само собой разумеется и то, что отброс гальванометра должен быть тоже пропорционален числу витков.

Это и показывает опыт. Итак,

наводимая ЭДС пропорциональна числу витков.

Еще раз подчеркиваем, что размеры маленькой катушки и ее расположение во время нашего опыта оставались неизменными. Само собой разумеется, что опыт проводился в одной и той же большой катушке при выключении того же тока.

Третье наблюдение. Проделав несколько опытов с одной и той же маленькой катушкой при неизменности включаемого тока, легко убедиться в том, что величина наводимой ЭДС зависит от того, как расположена маленькая катушка.

Для наблюдения зависимости наводимой ЭДС от положения маленькой катушки усовершенствуем несколько нашу установку (рис. 2.25).

К выходящему наружу концу оси маленькой катушки приделаем указательную стрелку и круг с делением (вроде

Рис. 2.25. Устройство для поворачивания маленькой катушки, закрепленной на стержне, пропущенном через стенки большой катушки. Стержень связан с указательной стрелкой. Положение стрелки на полукольце с делениями показывает, как расположена маленькая катушка тех, которые можно встретить на радиоприемниках).

Поворачивая стерженек, мы теперь по положению указательной стрелки можем судить о том положении, которое занимает маленькая катушка внутри большой.

Наблюдения показывают, что

наибольшая ЭДС наводится тогда, когда ось маленькой катушки совпадает с направлением магнитного поля,

другими словами, когда оси большой и малой катушек раллельны.

Рис. 2.26. К выводу понятия «магнитный поток». Магнитное поле изображено линиями, проведенными из расчета две линии на 1 см2: а - катушка площадью 2 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен четырьмя линиями, пересекающими катушку; б - катушка площадью 4 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен восемью линиями, пересекающими катушку; в - катушка площадью 4 см2 расположена наклонно. Магнитный поток, сцепленный с каждым из ее витков, изображен четырьмя линиями. Он равен так как каждая линия изображает, как это видно из рис. 2.26, а и б, поток в . Поток, сцепленный с катушкой, уменьшается из-за ее наклона

Такое расположение маленькой катушки показано на рис. 2.26, а и б. По мере поворота катушки наводимая в ней ЭДС будет все меньше и меньше.

Наконец, если плоскость маленькой катушки станет параллельной линиям, поля, в ней не будет наводиться никакой ЭДС. Может возникнуть вопрос, что же будет при дальнейшем повороте маленькой катушки?

Если мы повернем катушку больше чем на 90° (относительно исходного положения), то изменится знак наводимой ЭДС. Линии поля будут входить в катушку с другой стороны.

Четвертое наблюдение. Важно провести еще одно, заключительное наблюдение.

Выберем определенное положение, в которое будем ставить маленькую катушку.

Условимся, например, ставить ее всегда в такое положение, чтобы наводимая ЭДС была возможно большой (конечно, при данном числе витков и данном значении отключаемого тока). Изготовим несколько маленьких катушек разного диаметра, но с одинаковым числом витков.

Будем ставить эти катушки в одно и то же положение и, выключая ток, будем наблюдать за отбросом гальванометра.

Опыт покажет нам, что

наводимая ЭДС пропорциональна площади поперечного сечения катушек.

Магнитный поток. Все наблюдения позволяют нам сделать вывод о том, что

наводимая ЭДС всегда пропорциональна изменению магнитного потока.

Но что такое магнитный поток?

Сначала будем говорить о магнитном потоке через плоскую площадку S, образующую прямой угол с направлением магнитного поля. В этом случае магнитный поток равен произведению площади на индукцию или

здесь S - площадь нашей площадки, м2;; В - индукция, Тл; Ф - магнитный поток, Вб.

Единицей потока служит вебер.

Изображая магнитное поле посредством линий, мы можем сказать, что магнитный поток пропорционален числу линий, пронизывающих площадку.

Если линии поля проведены так, что число их на перпендикулярно поставленной плоскости равняется индукции поля В, то поток равен числу таких линий.

На рис. 2.26 магнитное люле в изображено линиями, проведенными из расчета двух линий на Каждая линия, таким образом, соответствует магнитному потоку величиной

Теперь для того чтобы определить величину магнитного потока, достаточно просто сосчитать количество линий, пронизывающих площадку, и умножить это число на

В случае рис. 2.26, а магнитный поток через площадку в 2 см2, перпендикулярную направлению поля,

На рис. 2.26, а эта площадка пронизана четырьмя магнитными линиями. В случае рис. 2.26, б магнитный поток через поперечную площадку в 4 см2 при индукции 0,2 Тл

и мы видим, что площадка пронизана восемью магнитными линиями.

Магнитный поток, сцепленный с витком. Говоря о наведенной ЭДС, нам нужно иметь в виду поток, сцепленный с витком.

Поток, сцепленный с витком - это поток, пронизывающий поверхность, ограниченную витком.

На рис. 2.26 поток, сцепленный с каждым витком катушки, в случае рис. 2.26, а равен а в случае рис. 2.26, б поток равен

Если площадка не перпендикулярна, а наклонена к магнитным линиям, то уже нельзя определять поток просто произведением площади на индукцию. Поток в этом случае определяется как произведение индукции на площадь проекции нашей площадки. Речь идет о проекции на плоскость, перпендикулярную линиям поля, или как бы о тени, отбрасываемой площадкой (рис. 2.27).

Однако при любой форме площадки поток по-прежнему пропорционален числу линий, проходящих через нее, или равен числу единичных линий, пронизывающих площадку.

Рис. 2.27. К выводу проекции площадки. Проводя опыты более подробно и объединяя наши третье и четвертое наблюдения, можно было бы сделать такой вывод; наводимая ЭДС пропорциональна площади той тени, которую отбрасывает наша маленькая катушка на плоскость, перпендикулярную линиям поля, если бы она была освещена лучами света, параллельными линиями поля. Такая тень называется проекцией

Так, на рис. 2.26, в поток через площадку в 4 см2 при индукции 0,2 Тл равен всего (линии ценой по ). Изображение магнитного поля линиями очень помогает при определении потока.

Если с каждым из N витков катушки сцеплен поток Ф, можно назвать произведение ЫФ полным потокосцеплением катушки. Понятием потокосцепления можно особенно удобно пользоваться, когда с разными витками сцеплены разные потоки. В этом случае полным потокосцеплением называют сумму потоков, сцепленных с каждым из витков.

Несколько замечаний о слове «поток». Почему мы говорим о потоке? Связано ли с этим словом представление о каком-то течении чего-то магнитного? В самом деле, говоря «электрический ток», мы представляем себе движение (поток) электрических зарядов. Так же ли обстоит дело и в случае магнитного потока?

Нет, когда мы говорим «магнитный поток», мы имеем в виду только определенную меру магнитного поля (произведение силы поля на площадь), похожую на меру, которой пользуются инженеры и ученые, изучающие движение жидкостей. При движении воды они называют ее потоком произведения скорости воды на площадь поперечно расположенной площадки (поток воды в трубе равен ее скорости на площадь поперечного сечения трубы).

Конечно, само магнитное поле, представляющее собой один из видов материи, связано и с особой формой движения. У нас еще нет достаточно отчетливых представлений и знаний о характере этого движения, хотя о свойствах магнитного поля современным ученым известно многое: магнитное поле связано с существованием особой формы энергии, его основной мерой является индукция, другой очень важной мерой является магнитный поток.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?