Подпишись и читай
самые интересные
статьи первым!

Что такое масса и вес. Академия занимательных наук

Изучением различия между массой и весом тела занимался Ньютон. Он рассуждал так: мы прекрасно знаем, что различные вещества, взятые в одинаковых объемах, весят неодинаково.

Масса

Количество вещества, содержащееся в том или ином предмете, Ньютон назвал массой.

Масса - то общее, что присуще всем без исключения предметам, - все равно, будут ли это черепки от старого глиняного горшка или золотые часы.

Например, кусочек золота более чем вдвое тяжелее точно такого же кусочка меди. Вероятно, частички золота, предположил Ньютон, способны укладываться плотнее, чем частички меди, и в золоте умещается больше вещества, чем в таком же по размерам куске меди.

Современные ученые установили, что различная плотность веществ объясняется не только тем, что частицы вещества уложены более плотно. Сами мельчайшие частички - атомы - отличаются по весу друг от друга: атомы золота тяжелее атомов меди .

Лежит ли какой-нибудь предмет неподвижно, или свободно падает на землю, или качается, подвешенный на нитке, - его масса при всех условиях остается неизменной .

Когда мы хотим узнать, как велика масса предмета, мы взвешиваем его на обычных торговых или лабораторных весах с чашками и гирями. На одну чашку весов кладем предмет, а на другую гири и таким образом сравниваем массу предмета с массой гирь. Поэтому торговые и лабораторные весы можно перевозить куда угодно: на полюс и на экватор, на вершину высокой горы и в глубокую шахту. Всюду и везде, даже на других планетах, эти весы будут показывать правильно, потому что с их помощью мы определяем не вес, а массу.

В разных точках земли можно измерять пружинными весами. Прицепив на крючок пружинных весов какой-либо предмет, мы сравниваем силу притяжения Земли, которую испытывает этот предмет, с силой упругости пружины. Сила тяжести тянет вниз, (подробнее: ) сила пружины - вверх, и, когда обе силы уравновесятся, указатель весов останавливается на определенном делении.

Пружинные весы верны только на той широте, где они изготовлены. Во всех других широтах, на полюсе и на экваторе они будут показывать различный вес. Правда, разница невелика, но она все же обнаружится, потому что сила тяжести на Земле не везде одинакова, а сила упругости пружины, разумеется, остается постоянной.

На других планетах эта разность окажется значительной и заметной. На Луне, например, предмет, весивший на Земле 1 килограмм, потянет на пружинных весах, привезенных с Земли, 161 грамм, на Марсе - 380 граммов, а на огромном Юпитере - 2640 граммов.

Чем больше масса планеты, тем больше и сила, с которой она притягивает тело, подвешенное на пружинных весах .

Поэтому так много весит тело на Юпитере и так мало на Луне.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R , конденсатору емкости C и катушки индуктивности L . Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

1. Резистор в цепи переменного тока

Сопротивление R называют активным, потому что цепь с таким сопротивлением поглощает энергию.

Активное сопротивление - устройство, в котором энергия электрического тока необратимо преобразуется в другие виды энергии (внутреннюю, механическую)

Пусть напряжение в цепи меняется по закону: u = Umcos ωt ,

тогда сила тока меняется по закону: i = u/R = I R cosωt

u – мгновенное значение напряжения;

i – мгновенное значение силы тока;

I R - амплитуда тока, протекающего через резистор.

Связь между амплитудами тока и напряжения на резисторе выражается соотношением RI R = U R


Колебания силы тока совпадают по фазе с колебаниями напряжения. (т.е. фазовый сдвиг между током и напряжением на резисторе равен нулю).

2. Конденсатор в цепи переменного тока

При включении конденсатора в цепь постоянного напряжения сила тока равна нулю, а при включении конденсатора в цепь переменного напряжения сила тока не равна нулю. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

I C и напряжения

Ток опережает по фазе напряжение на угол π/2.

3. Катушка в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для той же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.

Соотношение между амплитудами тока I L и напряжения U L :

ωLI L = U L

Ток отстает по фазе от напряжения на угол π/2.

Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I 0 . Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги.

Векторная диаграмма на рисунке построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Векторная диаграмма для последовательной RLC-цепи

Из рисунка видно, что

откуда следует

Из выражения для I 0 видно, что амплитуда тока принимает максимальное значение при условии

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω 0 электрической цепи называется электрическим резонансом . При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений . Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R , L и C (так называемый резонанс токов ).

При последовательном резонансе (ω = ω 0) амплитуды U C и U L напряжений на конденсаторе и катушке резко возрастают:

Рисунок иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды U C напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω. Кривые на рисунке называются резонансными кривыми .

Какое слово вы употребляете чаще: «масса» или «вес»? Думаю, это зависит от вашей профессии. Если вы учитель физики, то слово «масса» встречается в вашей речи чаще. Если же вы продавец в магазине, то слово «вес» вы слышите и произносите много раз в день. В чём же отличия массы от веса и причём тут профессиональная деятельность? Масса и вес – синонимы, но не абсолютные. Для начала, у обоих слов существует несколько значений. В этом легко убедиться на примере таких словосочетаний: «вес твоего голоса», «вес груза», «масса отличий», «масса тела». Основные значения этих слов в обиходе совпадают, но в науке, особенно в физике, отличия между массой и весом значительные. Так, масса – это физическая величина, определяющая инертные и гравитационные свойства тел. Масса определяет количество вещества в предмете. Вес – это сила, с которой объект давит на опору, чтобы не упасть. Исходя из этого определения, приходим к выводу, что в случае с весом гравитационная составляющая является обязательной для дачи верного определения. Так, например, если вес космонавта на земле 80 кг, то его вес на орбите будет почти нулевой, на Луне он бы весил меньше 15 кг, а вот на Юпитере — почти 200 кг. При этом его масса во всех случаях остается неизменной.

Официально масса и вес имеют различные единицы измерения, масса – килограммы, вес – ньютоны. Интересно, что в медицине традиционно мы имеем дело с понятием «вес человека», «вес новорождённого», который измеряют в килограммах, то есть на самом деле речь идёт о массе. При этом масса не подразумевает действие каких-либо сил, как вес. Это величина, которая рассчитывается в состоянии покоя и инертности.

Выводы сайт

  1. Масса — фундаментальная физическая величина, определяющая количество вещества и инертные свойства тела. Вес — это сила, с которой предмет давит на опору, которая зависит от гравитации. Например, масса человека на разных планетах остается той же, а вес меняется в зависимости от силы тяжести.
  2. Масса стандартно измеряется в килограммах, вес – в ньютонах.

Мы ощущаем это так, будто нас «вдавливает» в пол, или так, будто мы «зависаем» в воздухе. Лучше всего это можно ощутить при езде на американских горках или в лифтах высотных зданий, которые резко начинают подъём и спуск.

Пример:

Примеры увеличения веса:

Когда лифт резко начинает движение вверх, находящиеся в лифте люди испытывают ощущение, будто их «вдавливает» в пол.

Когда лифт резко уменьшает скорость движения вниз, тогда находящиеся в лифте люди из-за инерции сильнее «вжимаются» ногами в пол лифта.

Когда на американских горках проезжают через нижнюю точку горок, находящиеся в тележке люди испытывают ощущение, будто их «вдавливает» в сиденье.

Пример:

Примеры уменьшения веса:

При быстрой езде на велосипеде по небольшим пригоркам велосипедист на вершине пригорка испытывает ощущение лёгкости.

Когда лифт резко начинает движение вниз, находящиеся в лифте люди ощущают, что уменьшается их давление на пол, возникает ощущение свободного падения.

Когда на американских горках проезжают через высшую точку горок, находящиеся в тележке люди испытывают ощущение, будто их «подбрасывает» в воздух.

Когда на качелях раскачиваются до наивысшей точки, ощущается, что на короткий момент тело «зависает» в воздухе.

Изменение веса связано с инерцией - стремлением тела сохранять своё начальное состояние. Поэтому изменение веса всегда противоположно ускорению движения. Когда ускорение движения направлено вверх, вес тела увеличивается. А если ускорение движения направлено вниз, вес тела уменьшается.

На рисунке синими стрелками изображено направление ускорения движения.

1) Если лифт неподвижен или равномерно движется, то ускорение равно нулю. В этом случае вес человека нормальный, он равен силе тяжести и определяется так: P = m ⋅ g .

2) Если лифт движется ускоренно вверх или уменьшает свою скорость при движении вниз, то ускорение направлено вверх. В этом случае вес человека увеличивается и определяется так: P = m ⋅ g + a .

3) Если лифт движется ускоренно вниз или уменьшает свою скорость при движении вверх, то ускорение направлено вниз. В этом случае вес человека уменьшается и определяется так: P = m ⋅ g − a .

4) Если человек находится в объекте, который свободно падает, то ускорение движения направлено вниз и одинаково с ускорением свободного падения: \(a = g\) .

В этом случае вес человека равен нулю: P = 0 .

Пример:

Дано: масса человека - \(80 кг\). Человек входит в лифт, чтобы подняться наверх. Ускорение движения лифта составляет \(7\) м с 2 .

Каждый этап движения вместе с показаниями измерений приведён на рисунках ниже.

1) Лифт стоит на месте, и вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

2) Лифт начинает двигаться наверх с ускорением \(7\) м с 2 , и вес человека увеличивается: P = m ⋅ g + a = 80 ⋅ 9,8 + 7 = 1334 Н.

3) Лифт набрал скорость и едет равномерно, при этом вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

4) Лифт при движении вверх тормозит с отрицательным ускорением (замедлением) \(7\) м с 2 , и вес человека уменьшается: P = m ⋅ g − a = 80 ⋅ 9,8 − 7 = 224 Н.

5) Лифт полностью остановился, вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

В дополнение к картинкам и к примерам задания можно посмотреть видео с экспериментом, проведённым школьниками, в котором показано, как изменяется вес тела человека в лифте. Во время эксперимента школьники используют весы, в которых вес вместо килограммов сразу указывается в \(ньютонах, Н\). http://www.youtube.com/watch?v=D-GzuZjawNI .

Пример:

Состояние невесомости встречается в ситуациях, когда человек располагается в объекте, который находится в свободном падении. Есть специальные самолёты, которые предназначены для создания состояния невесомости. Они поднимаются на определённую высоту, и после этого самолёт переводится в свободное падение в течение примерно \(30 секунд\). Во время свободного падения самолёта находящиеся в нём люди ощущают состояние невесомости. Такую ситуацию можно посмотреть на этом видео.

Выпуск 15

Пятнадцатая серия передачи посвящена новым физическим величинам — массе тела и его весу. Эти понятия часто путают и измеряют вес в килограммах. Но это является грубой ошибкой и профессор Даниил Эдисонович Кварк объяснит, почему это так. Можно ли изменить свой вес тела или даже сделать его совершенно невесомым? Физика отвечает утвердительно. Хотите узнать, как это сделать? Тогда смотрите видеоурок физики от Академии занимательных наук, посвящённый массе и весу тела.

Масса и вес тела

В чём заключается отличие между массой и весом тела? Вроде бы это одно и то же. Но почему тогда, стоя на весах, мы можем изменять их показания, выполняя те или иные действия (поднимая руки или сгибая туловище)? Видеоурок физики — это то, что нужно для выяснения этих вопросов. Да, разница есть. С точки зрения физики, неправильно интересоваться у продавца, сколько весит тот или иной продукт. А правильно — спросить, какова его масса! Вес это векторная величина, сила. Она всегда имеет направление. При неизменной массе тела, его вес можно изменить. Например, положив на весы банан и надавив на него рукой мы получим больший вес, в то время, как масса банана останется прежней. Вес тела — это сила, с которой это тело, притягиваясь к земле, давит на опору или растягивает подвес. Если масса тела измеряется в килограммах, то вес, как и любая сила — ньютонами. Теперь понятно, почему неверно говорить, что вес тела равен столько-то килограммам? Итак, вес тела всегда измеряется в ньютонах, в то время как масса тела может измерять в граммах, килограммах и т.д. В отличие от массы тела, вес тела не является постоянной величиной. Он может увеличиваться или уменьшаться, при этом масса тела останется прежней. Масса тела представляет собой скалярную величину. Почему если сильно раскачаться на качелях, начинает «захватывать дух»? Профессор Кварк считает, что это ощущение невесомости, похожее на то, которое бывает в космосе. Как же получается, что вес тела становится равным нулю, пусть даже на какое-то мгновение? А получается так потому, что в момент падения тело ни на что не давит и ничего не оттягивает, следовательно, не имеет веса. Вот ещё один пример, доказывающий, что вес тела может меняться при неизменной массе. В воде все тела весят меньше, чем на суше. Иначе мы не могли бы плавать, а шли прямиком ко дну. Слон с массой тела в 1 тонну весит на суше больше, чем в воде. Киты с массой более 30 тонн способны в воде парить как птицы.

Включайся в дискуссию
Читайте также
Йошта рецепты Ягоды йошты что можно приготовить на зиму
Каково значение кровеносной системы
Разделка говядины: что выбрать и как готовить?